Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Proc Biol Sci ; 291(2026): 20240980, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38981521

RESUMO

Ecological and evolutionary predictions are being increasingly employed to inform decision-makers confronted with intensifying pressures on biodiversity. For these efforts to effectively guide conservation actions, knowing the limit of predictability is pivotal. In this study, we provide realistic expectations for the enterprise of predicting changes in ecological and evolutionary observations through time. We begin with an intuitive explanation of predictability (the extent to which predictions are possible) employing an easy-to-use metric, predictive power PP(t). To illustrate the challenge of forecasting, we then show that among insects, birds, fishes and mammals, (i) 50% of the populations are predictable at most 1 year in advance and (ii) the median 1-year-ahead predictive power corresponds to a prediction R 2 of only 20%. Predictability is not an immutable property of ecological systems. For example, different harvesting strategies can impact the predictability of exploited populations to varying degrees. Moreover, incorporating explanatory variables, accounting for time trends and considering multivariate time series can enhance predictability. To effectively address the challenge of biodiversity loss, researchers and practitioners must be aware of the information within the available data that can be used for prediction and explore efficient ways to leverage this knowledge for environmental stewardship.


Assuntos
Biodiversidade , Evolução Biológica , Conservação dos Recursos Naturais , Animais , Aves/fisiologia , Peixes/fisiologia , Insetos/fisiologia , Previsões , Mamíferos , Dinâmica Populacional , Modelos Biológicos
2.
Glob Chang Biol ; 30(1): e17014, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37943090

RESUMO

While climate warming is widely predicted to reduce body size of ectotherms, evidence for this trend is mixed. Body size depends not only on temperature but also on other factors, such as food quality and intraspecific competition. Because temperature trends or other long-term environmental factors may affect population size and food sources, attributing trends in average body size to temperature requires the separation of potentially confounding effects. We evaluated trends in the body size of the midge Tanytarsus gracilentus and potential drivers (water temperature, population size, and food quality) between 1977 and 2015 at Lake Mývatn, Iceland. Although temperatures increased at Mývatn over this period, there was only a slight (non-significant) decrease in midge adult body size, contrary to theoretical expectations. Using a state-space model including multiple predictors, body size was negatively associated with both water temperature and midge population abundance, and it was positively associated with 13 C enrichment of midges (an indicator of favorable food conditions). The magnitude of these effects were similar, such that simultaneous changes in temperature, abundance, and carbon stable isotopic signature could counteract each other in the long-term body size trend. Our results illustrate how multiple factors, all of which could be influenced by global change, interact to affect average ectotherm body size.


Assuntos
Mudança Climática , Lagos , Animais , Densidade Demográfica , Temperatura , Tamanho Corporal , Isótopos de Carbono , Insetos , Água
3.
Ecol Appl ; : e3009, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978401

RESUMO

Agricultural habitats are frequently disturbed, and disturbances could have major effects on species in upper trophic levels such as hymenopteran parasitoids that are important for biological control. A strategy for conservation biological control is to provide a diversified agricultural landscape which increases the availability of resources such as sugar required by parasitoid biological control agents. Here, we ask whether parasitoids occurring in agriculture benefit from sugar resources more or less than parasitoids occurring in natural habitats surrounding agricultural fields. We collected parasitoids from agricultural alfalfa fields, field margins, and natural prairies, and in the lab we randomly divided them into two treatments: half were given a constant supply of a sugar source to test their residual lifespan, and half were given neither sugar nor water to test their hardiness. Collected individuals were monitored daily and their day of death recorded. Parasitoids receiving a sugar source lived substantially longer than those without. Parasitoids collected in prairies lived longer than those from alfalfa fields in both the residual lifespan and hardiness treatments, with parasitoids from field margins being intermediate between them. Furthermore, the benefits of a sugar source to increase longevity was lower for parasitoids collected in agriculture than in natural habitats. This suggests that, even though parasitoid biological control agents benefit from sugar resources, their short lifespans make the benefit of sugar resources small compared to parasitoids that occur in natural habitats and have longer lifespans, and are adapted to consistent sugar sources.

4.
Oecologia ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951222

RESUMO

Competing species may show positive correlations in abundance through time and space if they rely on a shared resource. Such positive correlations might obscure resource partitioning that facilitates competitor coexistence. Here, we examine the potential for resource partitioning between two ecologically similar midge species (Diptera: Chironomidae) in Lake Mývatn, Iceland. Tanytarsus gracilentus and Chironomus islandicus show large, roughly synchronized population fluctuations, implying potential reliance on a shared fluctuating resource and thereby posing the question of how these species coexist at high larval abundances. We first considered spatial partitioning of larvae. Abundances of both species were positively correlated in space; thus, spatial partitioning across different sites in the lake did not appear to be strong. We then inferred differences in dietary resources with stable carbon isotopes. T. gracilentus larvae had significantly higher δ13C values than C. islandicus, suggesting interspecific differences in resource use. Differences in resource selectivity, tube-building behavior, and feeding styles may facilitate resource partitioning between these species. Relative to surface sediments, T. gracilentus had higher δ13C values, suggesting that they selectively graze on 13C-enriched resources such as productive algae from the surface of their tubes. In contrast, C. islandicus had lower δ13C values than surface sediments, suggesting reliance on 13C-depleted resources that may include detrital organic matter and associated microbes that larvae selectively consume from the sediment surface or within their burrow walls. Overall, our study illustrates that coexisting and ecologically similar species may show positive correlations in space and time while using different resources at fine spatial scales.

5.
Am Nat ; 201(3): E41-E55, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36848516

RESUMO

AbstractUncovering the demographic basis of population fluctuations is a central goal of population biology. This is particularly challenging for spatially structured populations, which require disentangling synchrony in demographic rates from coupling via movement between locations. In this study, we fit a stage-structured metapopulation model to a 29-year time series of threespine stickleback abundance in the heterogeneous and productive Lake Mývatn, Iceland. The lake comprises two basins (North and South) connected by a channel through which the stickleback disperse. The model includes time-varying demographic rates, allowing us to assess the potential contributions of recruitment and survival, spatial coupling via movement, and demographic transience to the population's large fluctuations in abundance. Our analyses indicate that recruitment was only modestly synchronized between the two basins, whereas survival probabilities of adults were more strongly synchronized, contributing to cyclic fluctuations in the lake-wide population size with a period of approximately 6 years. The analyses further show that the two basins were coupled through movement, with the North Basin subsidizing the South Basin and playing a dominant role in driving the lake-wide dynamics. Our results show that cyclic fluctuations of a metapopulation can be explained in terms of the combined effects of synchronized demographic rates and spatial coupling.


Assuntos
Biologia , Smegmamorpha , Animais , Lagos , Movimento , Densidade Demográfica
6.
Am Nat ; 202(5): 587-603, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37963115

RESUMO

AbstractIn January 2018, Sharon Strauss, then president of the American Society of Naturalists, organized a debate on the following topic: does evolutionary history inform the current functioning of ecological communities? The debaters-Ives, Lau, Mayfield, and Tobias-presented pro and con arguments, caricatured in standard debating format. Numerous examples show that both recent microevolutionary and longer-term macroevolutionary history are important to the ecological functioning of communities. On the other hand, many other examples illustrate that the evolutionary history of communities or community members does not influence ecological function, or at least not very much. This article aims to provide a provocative discussion of the consistent and conflicting patterns that emerge in the study of contemporary and historical evolutionary influences on community function, as well as to identify questions for further study. It is intended as a thought-provoking exercise to explore this complex field, specifically addressing (1) key assumptions and how they can lead us astray and (2) issues that need additional study. The debaters all agree that evolutionary history can inform us about at least some aspects of community function. The underlying question at the root of the debate, however, is how the fields of ecology and evolution can most profitably collaborate to provide a deeper and broader understanding of ecological communities.


Assuntos
Evolução Biológica , Ecossistema , Biota , Ecologia
7.
Glob Chang Biol ; 29(16): 4620-4637, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37254258

RESUMO

Grassland ecosystems cover up to 40% of the global land area and provide many ecosystem services directly supporting the livelihoods of over 1 billion people. Monitoring long-term changes in grasslands is crucial for food security, biodiversity conservation, achieving Land Degradation Neutrality goals, and modeling the global carbon budget. Although long-term grassland monitoring using remote sensing is extensive, it is typically based on a single vegetation index and does not account for temporal and spatial autocorrelation, which means that some trends are falsely identified while others are missed. Our goal was to analyze trends in grasslands in Eurasia, the largest continuous grassland ecosystems on Earth. To do so, we calculated Cumulative Endmember Fractions (annual sums of monthly ground cover fractions) derived from MODIS 2002-2020 time series, and applied a new statistical approach PARTS that explicitly accounts for temporal and spatial autocorrelation in trends. We examined trends in green vegetation, non-photosynthetic vegetation, and soil ground cover fractions considering their independent change trajectories and relations among fractions over time. We derived temporally uncorrelated pixel-based trend maps and statistically tested whether observed trends could be explained by elevation, land cover, SPEI3, climate, country, and their combinations, all while accounting for spatial autocorrelation. We found no statistical evidence for a decrease in vegetation cover in grasslands in Eurasia. Instead, there was a significant map-level increase in non-photosynthetic vegetation across the region and local increases in green vegetation with a concomitant decrease in soil fraction. Independent environmental variables affected trends significantly, but effects varied by region. Overall, our analyses show in a statistically robust manner that Eurasian grasslands have changed considerably over the past two decades. Our approach enhances remote sensing-based monitoring of trends in grasslands so that underlying processes can be discerned.


Assuntos
Ecossistema , Pradaria , Humanos , Clima , Biodiversidade , Solo
8.
Nature ; 550(7674): 105-108, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28953870

RESUMO

The tropical forests of Borneo and Amazonia may each contain more tree species diversity in half a square kilometre than do all the temperate forests of Europe, North America, and Asia combined. Biologists have long been fascinated by this disparity, using it to investigate potential drivers of biodiversity. Latitudinal variation in many of these drivers is expected to create geographic differences in ecological and evolutionary processes, and evidence increasingly shows that tropical ecosystems have higher rates of diversification, clade origination, and clade dispersal. However, there is currently no evidence to link gradients in ecological processes within communities at a local scale directly to the geographic gradient in biodiversity. Here, we show geographic variation in the storage effect, an ecological mechanism that reduces the potential for competitive exclusion more strongly in the tropics than it does in temperate and boreal zones, decreasing the ratio of interspecific-to-intraspecific competition by 0.25% for each degree of latitude that an ecosystem is located closer to the Equator. Additionally, we find evidence that latitudinal variation in climate underpins these differences; longer growing seasons in the tropics reduce constraints on the seasonal timing of reproduction, permitting lower recruitment synchrony between species and thereby enhancing niche partitioning through the storage effect. Our results demonstrate that the strength of the storage effect, and therefore its impact on diversity within communities, varies latitudinally in association with climate. This finding highlights the importance of biotic interactions in shaping geographic diversity patterns, and emphasizes the need to understand the mechanisms underpinning ecological processes in greater detail than has previously been appreciated.


Assuntos
Biodiversidade , Florestas , Análise Espaço-Temporal , Árvores/fisiologia , Clima Tropical , Mapeamento Geográfico , Reprodução , Estações do Ano , Fatores de Tempo , Árvores/crescimento & desenvolvimento
9.
Ecol Lett ; 24(2): 269-278, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33201560

RESUMO

Single-trait eco-evolutionary models of arms races between consumers and their resource species often show inhibition rather than promotion of community diversification. In contrast, modelling arms races involving multiple traits, we found that arms races can promote diversification when trade-off costs among traits make simultaneous investment in multiple traits either more beneficial or more costly. Coevolution between resource and consumer species generates an adaptive landscape for each, with the configuration giving predictable suites of consumer and resource species. Nonetheless, the adaptive landscape contains multiple alternative stable states, and which stable community is reached depends on small stochastic differences occurring along evolutionary pathways. Our results may solve a puzzling conflict between eco-evolutionary theory that predicts community diversification via consumer-resource interactions will be rare, and empirical research that has uncovered real cases. Furthermore, our results suggest that these real cases might be just a subset of alternative stable communities.


Assuntos
Cadeia Alimentar , Modelos Biológicos , Animais , Evolução Biológica , Estado Nutricional , Fenótipo , Comportamento Predatório
10.
Syst Biol ; 68(2): 234-251, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239975

RESUMO

Many researchers want to report an $R^{2}$ to measure the variance explained by a model. When the model includes correlation among data, such as phylogenetic models and mixed models, defining an $R^{2}$ faces two conceptual problems. (i) It is unclear how to measure the variance explained by predictor (independent) variables when the model contains covariances. (ii) Researchers may want the $R^{2}$ to include the variance explained by the covariances by asking questions such as "How much of the data is explained by phylogeny?" Here, I investigated three $R^{2}$s for phylogenetic and mixed models. $R^{2}_{resid}$ is an extension of the ordinary least-squares $R^{2}$ that weights residuals by variances and covariances estimated by the model; it is closely related to $R^{2}_{glmm}$ presented by Nakagawa and Schielzeth (2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4:133-142). $R^{2}_{pred}$ is based on predicting each residual from the fitted model and computing the variance between observed and predicted values. $R^{2}_{lik}$ is based on the likelihood of fitted models, and therefore, reflects the amount of information that the models contain. These three $R^{2}$s are formulated as partial $R^{2}$s, making it possible to compare the contributions of predictor variables and variance components (phylogenetic signal and random effects) to the fit of models. Because partial $R^{2}$s compare a full model with a reduced model without components of the full model, they are distinct from marginal $R^{2}$s that partition additive components of the variance. I assessed the properties of the $R^{2}$s for phylogenetic models using simulations for continuous and binary response data (phylogenetic generalized least squares and phylogenetic logistic regression). Because the $R^{2}$s are designed broadly for any model for correlated data, I also compared $R^{2}$s for linear mixed models and generalized linear mixed models. $R^{2}_{resid}$, $R^{2}_{pred}$, and $R^{2}_{lik}$ all have similar performance in describing the variance explained by different components of models. However, $R^{2}_{pred}$ gives the most direct answer to the question of how much variance in the data is explained by a model. $R^{2}_{resid}$ is most appropriate for comparing models fit to different data sets, because it does not depend on sample sizes. And $R^{2}_{lik}$ is most appropriate to assess the importance of different components within the same model applied to the same data, because it is most closely associated with statistical significance tests.


Assuntos
Classificação/métodos , Modelos Estatísticos , Filogenia
11.
Ecology ; 100(2): e02579, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30707453

RESUMO

Multiple abrupt and sometimes near-synchronous declines in tree populations have been detected in the temperate forests of eastern North America and Europe during the Holocene. Traditional approaches to understanding these declines focus on searching for climatic or other broad-scale extrinsic drivers. These approaches include multi-proxy studies that match reconstructed changes in tree abundance to reconstructed changes in precipitation or temperature. Although these correlative approaches are informative, they neglect the potential role of intrinsic processes, such as competition and dispersal, in shaping tree community dynamics. We developed a simple process-based community model that includes competition among tree species, density-dependent survival, and dispersal to investigate how these processes might generate abrupt changes in tree abundances even when extrinsic climatic factors do not themselves change abruptly. Specifically, a self-reinforcing (i.e., positive) feedback between abundance and survival can produce abrupt changes in tree abundance in the absence of long-term climatic changes. Furthermore, spatially correlated, short-term environmental variation and seed dispersal can increase the synchrony of abrupt changes. Using the well-studied, late-Holocene crash of Tsuga canadensis (eastern hemlock) populations as an empirical case study, we find that our model generates abrupt and quasi-synchronized crashes qualitatively similar to the observed hemlock patterns. Other tree taxa vary in the frequency and clustering of abrupt change and the proportion of increases and decreases. This complexity argues for caution in interpreting abrupt changes in species abundances as indicative of abrupt climatic changes. Nonetheless, some taxa show patterns that the model cannot produce: observed abrupt declines in hemlock abundance are more synchronized than abrupt increases, whereas the degree of synchronization is the same for abrupt decreases and increases in the model. Our results show that intrinsic processes can be significant contributing factors in abrupt tree population changes and highlight the diagnostic value of analyzing entire time series rather than single events when testing hypotheses about abrupt changes. Thus, intrinsic processes should be considered along with extrinsic drivers when seeking to explain rapid changes in community composition.


Assuntos
Ecossistema , Árvores , Europa (Continente) , Temperatura , Tsuga
12.
Proc Biol Sci ; 284(1864)2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021171

RESUMO

Interactions between multiple anthropogenic environmental changes can drive non-additive effects in ecological systems, and the non-additive effects can in turn be amplified or dampened by spatial covariation among environmental changes. We investigated the combined effects of night-time warming and light pollution on pea aphids and two predatory ladybeetle species. As expected, neither night-time warming nor light pollution changed the suppression of aphids by the ladybeetle species that forages effectively in darkness. However, for the more-visual predator, warming and light had non-additive effects in which together they caused much lower aphid abundances. These results are particularly relevant for agriculture near urban areas that experience both light pollution and warming from urban heat islands. Because warming and light pollution can have non-additive effects, predicting their possible combined consequences over broad spatial scales requires knowing how they co-occur. We found that night-time temperature change since 1949 covaried positively with light pollution, which has the potential to increase their non-additive effects on pea aphid control by 70% in US alfalfa. Our results highlight the importance of non-additive effects of multiple environmental factors on species and food webs, especially when these factors co-occur.


Assuntos
Afídeos/fisiologia , Besouros/fisiologia , Cadeia Alimentar , Temperatura Alta/efeitos adversos , Luz/efeitos adversos , Comportamento Predatório , Animais , Ritmo Circadiano , Mudança Climática , Produtos Agrícolas/crescimento & desenvolvimento , Ecossistema , Aquecimento Global , Wisconsin
13.
New Phytol ; 214(2): 607-618, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28044344

RESUMO

Phylogenetic and functional trait-based analyses inform our understanding of community composition, yet methods for quantifying the overlap in information derived from functional traits and phylogenies remain underdeveloped. Does adding traits to analyses of community composition reduce the phylogenetic signal in the residual variation? If not, then measured functional traits alone may be insufficient to explain community assembly. We propose a general statistical framework to quantify the proportion of phylogenetic pattern in community composition that remains after including measured functional traits. We then illustrate the framework with applications to two empirical data sets. Both data sets showed strong phylogenetic attraction, with related species likely to co-occur in the same communities. In one data set, including traits eliminated all phylogenetic signals in the residual variation of both abundance and presence/absence patterns. In the second data set, including traits reduced phylogenetic signal in residuals by 25% and 98% for abundance and presence/absence data, respectively. Our framework provides an explicit way to estimate how much phylogenetic community pattern remains in the residual variation after including measured functional traits. Knowing that functional traits account for most of the phylogenetic pattern should provide confidence that important traits for phylogenetic community structure have been identified. Conversely, knowing that there is unexplained residual phylogenetic information should spur the search for additional functional traits or other processes underlying community assembly.


Assuntos
Ecossistema , Filogenia , Característica Quantitativa Herdável , Modelos Lineares , Especificidade da Espécie
14.
Ecology ; 98(2): 447-455, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27861769

RESUMO

The chironomids of Lake Mývatn show extreme population fluctuations that affect most aspects of the lake ecosystem. During periods of high chironomid densities, chironomid larvae comprise over 90% of aquatic secondary production. Here, we show that chironomid larvae substantially stimulate benthic gross primary production (GPP) and net primary production (NPP), despite consuming benthic algae. Benthic GPP in experimental mesocosms with 140,000 larvae/m2 was 71% higher than in mesocosms with no larvae. Similarly, chlorophyll a concentrations in mesocosms increased significantly over the range of larval densities. Furthermore, larvae showed increased growth rates at higher densities, possibly due to greater benthic algal availability in these treatments. We investigated the hypothesis that larvae promote benthic algal growth by alleviating nutrient limitation, and found that (1) larvae have the potential to cycle the entire yearly external loadings of nitrogen and phosphorus during the growing season, and (2) chlorophyll a concentrations were significantly greater in close proximity to larvae (on larval tubes). The positive feedback between chironomid larvae and benthic algae generated a net mutualism between the primary consumer and primary producer trophic levels in the benthic ecosystem. Thus, our results give an example in which unexpected positive feedbacks can lead to both high primary and high secondary production.


Assuntos
Chironomidae/fisiologia , Microalgas/fisiologia , Simbiose , Animais , Clorofila , Clorofila A , Ecossistema , Lagos
15.
Oecologia ; 183(3): 751-762, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28000021

RESUMO

Individual variation in seed size and seed production is high in many plant species. How does this variation affect seed-dispersing animals and, in turn, the fitness of individual plants? In this study, we first surveyed intraspecific variation in seed mass and production in a population of a Chinese white pine, Pinus armandii. For 134 target trees investigated in 2012, there was very high variation in seed size, with mean seed mass varying among trees almost tenfold, from 0.038 to 0.361 g. Furthermore, 30 of the 134 trees produced seeds 2 years later, and for these individuals there was a correlation in seed mass of 0.59 between years, implying consistent differences among individuals. For a subset of 67 trees, we monitored the foraging preferences of scatter-hoarding rodents on a total of 15,301 seeds: 8380 were ignored, 3184 were eaten in situ, 2651 were eaten after being cached, and 395 were successfully dispersed (cached and left intact). At the scale of individual seeds, seed mass affected almost every decision that rodents made to eat, remove, and cache individual seeds. At the level of individual trees, larger seeds had increased probabilities of both predation and successful dispersal: the effects of mean seed size on costs (predation) and benefits (caching) balanced out. Thus, despite seed size affecting rodent decisions, variation among trees in dispersal success associated with mean seed size was small once seeds were harvested. This might explain, at least in part, the maintenance of high variation in mean seed mass among tree individuals.


Assuntos
Comportamento Alimentar , Dispersão de Sementes , Animais , Comportamento Predatório , Roedores , Sementes , Árvores
16.
Nature ; 470(7332): 86-9, 2011 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-21293376

RESUMO

Suppression of the invasive plant Salvinia molesta by the salvinia weevil is an iconic example of successful biological control. However, in the billabongs (oxbow lakes) of Kakadu National Park, Australia, control is fitful and incomplete. By fitting a process-based nonlinear model to thirteen-year data sets from four billabongs, here we show that incomplete control can be explained by alternative stable states--one state in which salvinia is suppressed and the other in which salvinia escapes weevil control. The shifts between states are associated with annual flooding events. In some years, high water flow reduces weevil populations, allowing the shift from a controlled to an uncontrolled state; in other years, benign conditions for weevils promote the return shift to the controlled state. In most described ecological examples, transitions between alternative stable states are relatively rare, facilitated by slow-moving environmental changes, such as accumulated nutrient loading or climate change. The billabongs of Kakadu give a different manifestation of alternative stable states that generate complex and seemingly unpredictable dynamics. Because shifts between alternative stable states are stochastic, they present a potential management strategy to maximize effective biological control: when the domain of attraction to the state of salvinia control is approached, augmentation of the weevil population or reduction of the salvinia biomass may allow the lower state to trap the system.


Assuntos
Gleiquênias/crescimento & desenvolvimento , Água Doce , Controle Biológico de Vetores/estatística & dados numéricos , Plantas Daninhas/crescimento & desenvolvimento , Gorgulhos/fisiologia , Meio Selvagem , Animais , Austrália , Biomassa , Gleiquênias/fisiologia , Inundações , Espécies Introduzidas/estatística & dados numéricos , Modelos Biológicos , Controle Biológico de Vetores/métodos , Plantas Daninhas/fisiologia , América do Sul/etnologia , Processos Estocásticos , Fatores de Tempo
17.
Bioinformatics ; 31(17): 2888-90, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25948716

RESUMO

UNLABELLED: pez is an R package that permits measurement, modelling and simulation of phylogenetic structure in ecological data. pez contains the first implementation of many methods in R, and aggregates existing data structures and methods into a single, coherent package. AVAILABILITY AND IMPLEMENTATION: pez is released under the GPL v3 open-source license, available on the Internet from CRAN (http://cran.r-project.org). The package is under active development, and the authors welcome contributions (see http://github.com/willpearse/pez). CONTACT: will.pearse@gmail.com.


Assuntos
Biodiversidade , Bases de Dados Genéticas , Ecologia , Filogenia , Software , Fenótipo
18.
Ecology ; 97(2): 361-71, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27145611

RESUMO

Ecologists have long been fascinated by cyclic population fluctuations, because they suggest strong interactions between exploiter and victim species. Nonetheless, even for populations showing high-amplitude fluctuations, it is often hard to identify which species are the key drivers of the dynamics, because data are generally only available for a single species. Here, we use a paleoecological approach to investigate fluctuations in the midge population in Lake Mývatn, Iceland, which ranges over several orders of magnitude in irregular, multigeneration cycles. Previous circumstantial evidence points to consumer-resource interactions between midges and their primary food, diatoms, as the cause of these high-amplitude fluctuations. Using a pair of sediment cores from the lake, we reconstructed 26 years of dynamics of midges using egg remains and of algal groups using diagnostic pigments. We analyzed these data using statistical methods that account for both the autocorrelated nature of paleoecological data and measurement error caused by the mixing of sediment layers. The analyses revealed a signature of consumer-resource interactions in the fluctuations of midges and diatoms: diatom abundance (as inferred from biomarker pigment diatoxanthin) increased when midge abundance was low, and midge abundance (inferred from egg capsules) decreased when diatom abundance was low. Similar patterns were not found for pigments characterizing the other dominant primary producer group in the lake (cyanobacteria), subdominant algae (cryptophytes), or ubiquitous but chemically unstable biomarkers of total algal abundance (chlorophyll a); however, a significant but weaker pattern was found for the chemically stable indicator of total algal populations (ß-carotene) to which diatoms are the dominant contributor. These analyses provide the first paleoecological evaluation of specific trophic interactions underlying high amplitude population fluctuations in lakes.


Assuntos
Chironomidae/fisiologia , Ecossistema , Fósseis , Animais , Biomarcadores , Criptófitas , Cianobactérias , Sedimentos Geológicos , Islândia , Lagos , Modelos Biológicos , Modelos Estatísticos , Pigmentos Biológicos , Dinâmica Populacional , Fatores de Tempo
19.
PLoS Biol ; 11(10): e1001685, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24167443

RESUMO

BACKGROUND: Recent studies suggest that environmental changes may tip the balance between interacting species, leading to the extinction of one or more species. While it is recognized that evolution will play a role in determining how environmental changes directly affect species, the interactions among species force us to consider the coevolutionary responses of species to environmental changes. METHODOLOGY/PRINCIPLE FINDINGS: We use simple models of competition, predation, and mutualism to organize and synthesize the ways coevolution modifies species interactions when climatic changes favor one species over another. In cases where species have conflicting interests (i.e., selection for increased interspecific interaction strength on one species is detrimental to the other), we show that coevolution reduces the effects of climate change, leading to smaller changes in abundances and reduced chances of extinction. Conversely, when species have nonconflicting interests (i.e., selection for increased interspecific interaction strength on one species benefits the other), coevolution increases the effects of climate change. CONCLUSIONS/SIGNIFICANCE: Coevolution sets up feedback loops that either dampen or amplify the effect of environmental change on species abundances depending on whether coevolution has conflicting or nonconflicting effects on species interactions. Thus, gaining a better understanding of the coevolutionary processes between interacting species is critical for understanding how communities respond to a changing climate. We suggest experimental methods to determine which types of coevolution (conflicting or nonconflicting) drive species interactions, which should lead to better understanding of the effects of coevolution on species adaptation. Conducting these experiments across environmental gradients will test our predictions of the effects of environmental change and coevolution on ecological communities.


Assuntos
Evolução Biológica , Mudança Climática , Animais , Comportamento Competitivo , Modelos Biológicos , Comportamento Predatório , Especificidade da Espécie , Simbiose
20.
BMC Genomics ; 16: 522, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26169061

RESUMO

BACKGROUND: Next-generation sequencing technologies are rapidly generating whole-genome datasets for an increasing number of organisms. However, phylogenetic reconstruction of genomic data remains difficult because de novo assembly for non-model genomes and multi-genome alignment are challenging. RESULTS: To greatly simplify the analysis, we present an Assembly and Alignment-Free (AAF) method ( https://sourceforge.net/projects/aaf-phylogeny ) that constructs phylogenies directly from unassembled genome sequence data, bypassing both genome assembly and alignment. Using mathematical calculations, models of sequence evolution, and simulated sequencing of published genomes, we address both evolutionary and sampling issues caused by direct reconstruction, including homoplasy, sequencing errors, and incomplete sequencing coverage. From these results, we calculate the statistical properties of the pairwise distances between genomes, allowing us to optimize parameter selection and perform bootstrapping. As a test case with real data, we successfully reconstructed the phylogeny of 12 mammals using raw sequencing reads. We also applied AAF to 21 tropical tree genome datasets with low coverage to demonstrate its effectiveness on non-model organisms. CONCLUSION: Our AAF method opens up phylogenomics for species without an appropriate reference genome or high sequence coverage, and rapidly creates a phylogenetic framework for further analysis of genome structure and diversity among non-model organisms.


Assuntos
Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Filogenia , Algoritmos , Animais , Sequência de Bases , Genômica/métodos , Mamíferos/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa