Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
PLoS Comput Biol ; 19(1): e1010850, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36693034

RESUMO

Patients with renal anemia are frequently treated with erythropoiesis-stimulating agents (ESAs), which are dynamically dosed in order to stabilize blood hemoglobin levels within a specified target range. During typical ESA treatments, a fraction of patients experience hemoglobin 'cycling' periods during which hemoglobin levels periodically over- and undershoot the target range. Here we report a specific mechanism of hemoglobin cycling, whereby cycles emerge from the patient's delayed physiological response to ESAs and concurrent ESA dose adjustments. We introduce a minimal theoretical model that can explain dynamic hallmarks of observed hemoglobin cycling events in clinical time series and elucidates how physiological factors (such as red blood cell lifespan and ESA responsiveness) and treatment-related factors (such as dosing schemes) affect cycling. These results show that in general, hemoglobin cycling cannot be attributed to patient physiology or ESA treatment alone but emerges through an interplay of both, with consequences for the design of ESA treatment strategies.


Assuntos
Anemia , Hematínicos , Nefropatias , Humanos , Hematínicos/uso terapêutico , Hematínicos/efeitos adversos , Eritropoese , Anemia/tratamento farmacológico , Hemoglobinas
2.
Nature ; 549(7671): 227-232, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28854171

RESUMO

Human glioblastomas harbour a subpopulation of glioblastoma stem cells that drive tumorigenesis. However, the origin of intratumoural functional heterogeneity between glioblastoma cells remains poorly understood. Here we study the clonal evolution of barcoded glioblastoma cells in an unbiased way following serial xenotransplantation to define their individual fate behaviours. Independent of an evolving mutational signature, we show that the growth of glioblastoma clones in vivo is consistent with a remarkably neutral process involving a conserved proliferative hierarchy rooted in glioblastoma stem cells. In this model, slow-cycling stem-like cells give rise to a more rapidly cycling progenitor population with extensive self-maintenance capacity, which in turn generates non-proliferative cells. We also identify rare 'outlier' clones that deviate from these dynamics, and further show that chemotherapy facilitates the expansion of pre-existing drug-resistant glioblastoma stem cells. Finally, we show that functionally distinct glioblastoma stem cells can be separately targeted using epigenetic compounds, suggesting new avenues for glioblastoma-targeted therapy.


Assuntos
Diferenciação Celular , Linhagem da Célula , Rastreamento de Células , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células , Células Clonais/efeitos dos fármacos , Células Clonais/patologia , Epigênese Genética , Feminino , Glioblastoma/tratamento farmacológico , Xenoenxertos , Humanos , Camundongos , Invasividade Neoplásica , Transplante de Neoplasias , Células-Tronco Neoplásicas/efeitos dos fármacos , Fenótipo , Processos Estocásticos
3.
Phys Biol ; 13(5): 05LT03, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27727151

RESUMO

Rhythmic and sequential segmentation of the embryonic body plan is a vital developmental patterning process in all vertebrate species. However, a theoretical framework capturing the emergence of dynamic patterns of gene expression from the interplay of cell oscillations with tissue elongation and shortening and with signaling gradients, is still missing. Here we show that a set of coupled genetic oscillators in an elongating tissue that is regulated by diffusing and advected signaling molecules can account for segmentation as a self-organized patterning process. This system can form a finite number of segments and the dynamics of segmentation and the total number of segments formed depend strongly on kinetic parameters describing tissue elongation and signaling molecules. The model accounts for existing experimental perturbations to signaling gradients, and makes testable predictions about novel perturbations. The variety of different patterns formed in our model can account for the variability of segmentation between different animal species.


Assuntos
Padronização Corporal , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais , Vertebrados/embriologia , Animais , Vertebrados/genética
4.
Chaos ; 25(5): 053106, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26026318

RESUMO

Like the inertia of a physical body describes its tendency to resist changes of its state of motion, inertia of an oscillator describes its tendency to resist changes of its frequency. Here, we show that finite inertia of individual oscillators enables nonlinear phase waves in spatially extended coupled systems. Using a discrete model of coupled phase oscillators with inertia, we investigate these wave phenomena numerically, complemented by a continuum approximation that permits the analytical description of the key features of wave propagation in the long-wavelength limit. The ability to exhibit traveling waves is a generic feature of systems with finite inertia and is independent of the details of the coupling function.

5.
New J Phys ; 17(9): 093042, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28725158

RESUMO

The segmentation of the vertebrate body plan during embryonic development is a rhythmic and sequential process governed by genetic oscillations. These genetic oscillations give rise to traveling waves of gene expression in the segmenting tissue. Here we present a minimal continuum theory of vertebrate segmentation that captures the key principles governing the dynamic patterns of gene expression including the effects of shortening of the oscillating tissue. We show that our theory can quantitatively account for the key features of segmentation observed in zebrafish, in particular the shape of the wave patterns, the period of segmentation and the segment length as a function of time.

6.
Phys Rev Lett ; 112(17): 174101, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24836248

RESUMO

In systems of coupled oscillators, the effects of complex signaling can be captured by time delays and phase shifts. Here, we show how time delays and phase shifts lead to different oscillator dynamics and how synchronization rates can be regulated by substituting time delays by phase shifts at a constant collective frequency. For spatially extended systems with time delays, we show that the fastest synchronization can occur for intermediate wavelengths, giving rise to novel synchronization scenarios.


Assuntos
Modelos Teóricos , Transição de Fase , Transdução de Sinais
7.
Phys Rev Lett ; 108(20): 204101, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-23003147

RESUMO

We study the effects of delayed coupling on timing and pattern formation in spatially extended systems of dynamic oscillators. Starting from a discrete lattice of coupled oscillators, we derive a generic continuum theory for collective modes of long wavelengths. We use this approach to study spatial phase profiles of cellular oscillators in the segmentation clock, a dynamic patterning system of vertebrate embryos. Collective wave patterns result from the interplay of coupling delays and moving boundary conditions. We show that the phase profiles of collective modes depend on coupling delays.

8.
FASEB Bioadv ; 4(7): 436-440, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35812074

RESUMO

Erythropoietin deficiency is an extensively researched cause of renal anemia. The etiology and consequences of shortened red blood cell (RBC) life span in chronic kidney disease (CKD) are less well understood. Traversing capillaries requires RBC geometry changes, a process enabled by adaptions of the cytoskeleton. These changes are mediated by transient activation of the mechanosensory Piezo1 channel, resulting in calcium influx. Importantly, prolonged Piezo1 activation shortens RBC life span, presumably through activation of calcium-dependent intracellular pathways triggering RBC death. Two Piezo1-activating small molecules, Jedi1 and Jedi2, share remarkable structural similarities with 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF), a uremic retention solute cleared by the healthy kidney. We hypothesize that in CKD the accumulation of CMPF leads to prolonged activation of Piezo1 (similar in effect to Jedi1 and Jedi2), thus reducing RBC life span. This hypothesis can be tested through bench experiments and, ultimately, by studying the effect of CMPF removal on renal anemia.

9.
Elife ; 112022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35942681

RESUMO

For the treatment of postmenopausal osteoporosis, several drug classes with different mechanisms of action are available. Since only a limited set of dosing regimens and drug combinations can be tested in clinical trials, it is currently unclear whether common medication strategies achieve optimal bone mineral density gains or are outperformed by alternative dosing schemes and combination therapies that have not been explored so far. Here, we develop a mathematical framework of drug interventions for postmenopausal osteoporosis that unifies fundamental mechanisms of bone remodeling and the mechanisms of action of four drug classes: bisphosphonates, parathyroid hormone analogs, sclerostin inhibitors, and receptor activator of NF-κB ligand inhibitors. Using data from several clinical trials, we calibrate and validate the model, demonstrating its predictive capacity for complex medication scenarios, including sequential and parallel drug combinations. Via simulations, we reveal that there is a large potential to improve gains in bone mineral density by exploiting synergistic interactions between different drug classes, without increasing the total amount of drug administered.


Our bones are constantly being renewed in a fine-tuned cycle of destruction and formation that helps keep them healthy and strong. However, this process can become imbalanced and lead to osteoporosis, where the bones are weakened and have a high risk of fracturing. This is particularly common post-menopause, with one in three women over the age of 50 experiencing a broken bone due to osteoporosis. There are several drug types available for treating osteoporosis, which work in different ways to strengthen bones. These drugs can be taken individually or combined, meaning that a huge number of drug combinations and treatment strategies are theoretically possible. However, it is not practical to test the effectiveness of all of these options in human trials. This could mean that patients are not getting the maximum potential benefit from the drugs available. Jörg et al. developed a mathematical model to predict how different osteoporosis drugs affect the process of bone renewal in the human body. The model could then simulate the effect of changing the order in which the therapies were taken, which showed that the sequence had a considerable impact on the efficacy of the treatment. This occurs because different drugs can interact with each other, leading to an improved outcome when they work in the right order. These results suggest that people with osteoporosis may benefit from altered treatment schemes without changing the type or amount of medication taken. The model could suggest new treatment combinations that reduce the risk of bone fracture, potentially even developing personalised plans for individual patients based on routine clinical measurements in response to different drugs.


Assuntos
Conservadores da Densidade Óssea , Osteoporose Pós-Menopausa , Osteoporose , Densidade Óssea , Conservadores da Densidade Óssea/uso terapêutico , Difosfonatos/uso terapêutico , Combinação de Medicamentos , Feminino , Humanos , Osteoporose/tratamento farmacológico , Osteoporose Pós-Menopausa/tratamento farmacológico
10.
Cell Stem Cell ; 28(8): 1443-1456.e7, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33848470

RESUMO

A remarkable feature of tissue stem cells is their ability to regenerate the structure and function of host tissue following transplantation. However, the dynamics of donor stem cells during regeneration remains largely unknown. Here we conducted quantitative clonal fate studies of transplanted mouse spermatogonial stem cells in host seminiferous tubules. We found that, after a large population of donor spermatogonia settle in host testes, through stochastic fate choice, only a small fraction persist and regenerate over the long term, and the rest are lost through differentiation and cell death. Further, based on these insights, we showed how repopulation efficiency can be increased to a level where the fertility of infertile hosts is restored by transiently suppressing differentiation using a chemical inhibitor of retinoic acid synthesis. These findings unlock a range of potential applications of spermatogonial transplantation, from fertility restoration in individuals with cancer to conservation of biological diversity.


Assuntos
Espermatogênese , Espermatogônias , Animais , Diferenciação Celular , Fertilidade , Masculino , Camundongos , Testículo
11.
Cell Rep ; 37(3): 109875, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34686326

RESUMO

In mouse testis, a heterogeneous population of undifferentiated spermatogonia (Aundiff) harbors spermatogenic stem cell (SSC) potential. Although GFRα1+ Aundiff maintains the self-renewing pool in homeostasis, the functional basis of heterogeneity and the implications for their dynamics remain unresolved. Here, through quantitative lineage tracing of SSC subpopulations, we show that an ensemble of heterogeneous states of SSCs supports homeostatic, persistent spermatogenesis. Such heterogeneity is maintained robustly through stochastic interconversion of SSCs between a renewal-biased Plvap+/GFRα1+ state and a differentiation-primed Sox3+/GFRα1+ state. In this framework, stem cell commitment occurs not directly but gradually through entry into licensed but uncommitted states. Further, Plvap+/GFRα1+ cells divide slowly, in synchrony with the seminiferous epithelial cycle, while Sox3+/GFRα1+ cells divide much faster. Such differential cell-cycle dynamics reduces mitotic load, and thereby the potential to acquire harmful de novo mutations of the self-renewing pool, while keeping the SSC density high over the testicular open niche.


Assuntos
Células-Tronco Germinativas Adultas/fisiologia , Linhagem da Célula , Espermatogênese , Testículo/fisiologia , Células-Tronco Germinativas Adultas/metabolismo , Animais , Autorrenovação Celular , Regulação da Expressão Gênica no Desenvolvimento , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Mitose , Modelos Biológicos , Fenótipo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Testículo/citologia , Testículo/metabolismo , Fatores de Tempo
12.
Nat Neurosci ; 24(2): 225-233, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33349709

RESUMO

Neural stem cells (NSCs) generate neurons throughout life in the mammalian hippocampus. However, the potential for long-term self-renewal of individual NSCs within the adult brain remains unclear. We used two-photon microscopy and followed NSCs that were genetically labeled through conditional recombination driven by the regulatory elements of the stem cell-expressed genes GLI family zinc finger 1 (Gli1) or achaete-scute homolog 1 (Ascl1). Through intravital imaging of NSCs and their progeny, we identify a population of Gli1-targeted NSCs showing long-term self-renewal in the adult hippocampus. In contrast, once activated, Ascl1-targeted NSCs undergo limited proliferative activity before they become exhausted. Using single-cell RNA sequencing, we show that Gli1- and Ascl1-targeted cells have highly similar yet distinct transcriptional profiles, supporting the existence of heterogeneous NSC populations with diverse behavioral properties. Thus, we here identify long-term self-renewing NSCs that contribute to the generation of new neurons in the adult hippocampus.


Assuntos
Hipocampo/crescimento & desenvolvimento , Células-Tronco Neurais/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem da Célula , Feminino , Perfilação da Expressão Gênica , Hipocampo/citologia , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Microscopia Intravital , Masculino , Metalotioneína 3 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Regeneração Nervosa , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Análise de Célula Única , Proteína GLI1 em Dedos de Zinco/biossíntese , Proteína GLI1 em Dedos de Zinco/genética
13.
Cell Stem Cell ; 28(5): 955-966.e7, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33848469

RESUMO

Stem cell dysfunction drives many age-related disorders. Identifying mechanisms that initially compromise stem cell behavior represent early targets to promote tissue function later in life. Here, we pinpoint multiple factors that disrupt neural stem cell (NSC) behavior in the adult hippocampus. Clonal tracing showed that NSCs exhibit asynchronous depletion by identifying short-term NSCs (ST-NSCs) and long-term NSCs (LT-NSCs). ST-NSCs divide rapidly to generate neurons and deplete in the young brain. Meanwhile, multipotent LT-NSCs are maintained for months but are pushed out of homeostasis by lengthening quiescence. Single-cell transcriptome analysis of deep NSC quiescence revealed several hallmarks of molecular aging in the mature brain and identified tyrosine-protein kinase Abl1 as an NSC aging factor. Treatment with the Abl inhibitor imatinib increased NSC activation without impairing NSC maintenance in the middle-aged brain. Our study indicates that hippocampal NSCs are particularly vulnerable and adaptable to cellular aging.


Assuntos
Células-Tronco Neurais , Neurogênese , Encéfalo , Senescência Celular , Hipocampo
14.
Cell Rep ; 34(11): 108853, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33730566

RESUMO

Radial glial progenitors (RGPs) give rise to the vast majority of neurons and glia in the neocortex. Although RGP behavior and progressive generation of neocortical neurons have been delineated, the exact process of neocortical gliogenesis remains elusive. Here, we report the precise progenitor behavior and gliogenesis program at single-cell resolution in the mouse neocortex. Fractions of dorsal RGPs transition from neurogenesis to gliogenesis progressively, producing astrocytes, oligodendrocytes, or both in well-defined propensities of ∼60%, 15%, and 25%, respectively, by fate-restricted "intermediate" precursor cells (IPCs). Although the total number of IPCs generated by individual RGPs appears stochastic, the output of individual IPCs exhibit clear patterns in number and subtype and form discrete local subclusters. Clonal loss of tumor suppressor Neurofibromatosis type 1 leads to excessive production of glia selectively, especially oligodendrocyte precursor cells. These results quantitatively delineate the cellular program of neocortical gliogenesis and suggest the cellular and lineage origin of primary brain tumor.


Assuntos
Carcinogênese/patologia , Neocórtex/patologia , Células-Tronco Neurais/patologia , Neuroglia/patologia , Animais , Astrócitos , Biomarcadores/metabolismo , Carcinogênese/metabolismo , Linhagem da Célula , Camundongos Endogâmicos C57BL , Neurofibromina 1/metabolismo , Neurogênese , Oligodendroglia
15.
Front Cell Dev Biol ; 8: 598148, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363152

RESUMO

Red blood cells (RBC) are the most abundant cells in the blood. Despite powerful defense systems against chemical and mechanical stressors, their life span is limited to about 120 days in healthy humans and further shortened in patients with kidney failure. Changes in the cell membrane potential and cation permeability trigger a cascade of events that lead to exposure of phosphatidylserine on the outer leaflet of the RBC membrane. The translocation of phosphatidylserine is an important step in a process that eventually results in eryptosis, the programmed death of an RBC. The regulation of eryptosis is complex and involves several cellular pathways, such as the regulation of non-selective cation channels. Increased cytosolic calcium concentration results in scramblase and floppase activation, exposing phosphatidylserine on the cell surface, leading to early clearance of RBCs from the circulation by phagocytic cells. While eryptosis is physiologically meaningful to recycle iron and other RBC constituents in healthy subjects, it is augmented under pathological conditions, such as kidney failure. In chronic kidney disease (CKD) patients, the number of eryptotic RBC is significantly increased, resulting in a shortened RBC life span that further compounds renal anemia. In CKD patients, uremic toxins, oxidative stress, hypoxemia, and inflammation contribute to the increased eryptosis rate. Eryptosis may have an impact on renal anemia, and depending on the degree of shortened RBC life span, the administration of erythropoiesis-stimulating agents is often insufficient to attain desired hemoglobin target levels. The goal of this review is to indicate the importance of eryptosis as a process closely related to life span reduction, aggravating renal anemia.

16.
Elife ; 82019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30794154

RESUMO

In living organisms, self-organised waves of signalling activity propagate spatiotemporal information within tissues. During the development of the largest component of the visual processing centre of the Drosophila brain, a travelling wave of proneural gene expression initiates neurogenesis in the larval optic lobe primordium and drives the sequential transition of neuroepithelial cells into neuroblasts. Here, we propose that this 'proneural wave' is driven by an excitable reaction-diffusion system involving epidermal growth factor receptor (EGFR) signalling interacting with the proneural gene l'sc. Within this framework, a propagating transition zone emerges from molecular feedback and diffusion. Ectopic activation of EGFR signalling in clones within the neuroepithelium demonstrates that a transition wave can be excited anywhere in the tissue by inducing signalling activity, consistent with a key prediction of the model. Our model illuminates the physical and molecular underpinnings of proneural wave progression and suggests a generic mechanism for regulating the sequential differentiation of tissues.


Assuntos
Diferenciação Celular , Drosophila/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Células Neuroepiteliais/fisiologia , Neurônios/fisiologia , Lobo Óptico de Animais não Mamíferos/embriologia , Animais , Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Receptores de Peptídeos de Invertebrados/metabolismo , Transdução de Sinais
18.
Cell Stem Cell ; 25(3): 342-356.e7, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31422913

RESUMO

The gastric corpus epithelium is the thickest part of the gastrointestinal tract and is rapidly turned over. Several markers have been proposed for gastric corpus stem cells in both isthmus and base regions. However, the identity of isthmus stem cells (IsthSCs) and the interaction between distinct stem cell populations is still under debate. Here, based on unbiased genetic labeling and biophysical modeling, we show that corpus glands are compartmentalized into two independent zones, with slow-cycling stem cells maintaining the base and actively cycling stem cells maintaining the pit-isthmus-neck region through a process of "punctuated" neutral drift dynamics. Independent lineage tracing based on Stmn1 and Ki67 expression confirmed that rapidly cycling IsthSCs maintain the pit-isthmus-neck region. Finally, single-cell RNA sequencing (RNA-seq) analysis is used to define the molecular identity and lineage relationship of a single, cycling, IsthSC population. These observations define the identity and functional behavior of IsthSCs.


Assuntos
Células-Tronco Adultas/citologia , Mucosa Gástrica/citologia , Estômago/citologia , Células-Tronco Adultas/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem da Célula , Autorrenovação Celular , Células Cultivadas , Mucosa Gástrica/metabolismo , Humanos , Antígeno Ki-67/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Estatmina/metabolismo , Nicho de Células-Tronco
19.
Cell Stem Cell ; 24(1): 79-92.e6, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30581080

RESUMO

In many tissues, homeostasis is maintained by physical contact between stem cells and an anatomically defined niche. However, how stem cell homeostasis is achieved in environments where cells are motile and dispersed among their progeny remains unknown. Using murine spermatogenesis as a model, we find that spermatogenic stem cell density is tightly regulated by the supply of fibroblast growth factors (FGFs) from lymphatic endothelial cells. We propose that stem cell homeostasis is achieved through competition for a limited supply of FGFs. We show that the quantitative dependence of stem cell density on FGF dosage, the biased localization of stem cells toward FGF sources, and stem cell dynamics during regeneration following injury can all be predicted and explained within the framework of a minimal theoretical model based on "mitogen competition." We propose that this model provides a generic and robust mechanism to support stem cell homeostasis in open, or facultative, niche environments.


Assuntos
Fator 5 de Crescimento de Fibroblastos/fisiologia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Homeostase , Mitógenos/farmacologia , Espermatogênese , Espermatozoides/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular , Autorrenovação Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espermatozoides/fisiologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/fisiologia
20.
Phys Rev E ; 97(3-1): 032409, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29776186

RESUMO

We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.


Assuntos
Células/metabolismo , Regulação da Expressão Gênica , Modelos Biológicos , Células/citologia , Transdução de Sinais , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa