Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Plant Cell ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691576

RESUMO

Soil salinity is a major contributor to crop yield losses. To improve our understanding of root responses to salinity, we developed and exploited a real-time salt-induced tilting assay. This assay follows root growth upon both gravitropic and salt challenges, revealing that root bending upon tilting is modulated by Na+ ions, but not by osmotic stress. Next, we measured this salt-specific response in 345 natural Arabidopsis (Arabidopsis thaliana) accessions and discovered a genetic locus, encoding the cell wall-modifying enzyme EXTENSIN ARABINOSE DEFICIENT TRANSFERASE (ExAD) that is associated with root bending in the presence of NaCl (hereafter salt). Extensins are a class of structural cell wall glycoproteins known as hydroxyproline (Hyp)-rich glycoproteins, which are posttranslationally modified by O-glycosylation, mostly involving Hyp-arabinosylation. We show that salt-induced ExAD-dependent Hyp-arabinosylation influences root bending responses and cell wall thickness. Roots of exad1 mutant seedlings, which lack Hyp-arabinosylation of extensin, displayed increased thickness of root epidermal cell walls and greater cell wall porosity. They also showed altered gravitropic root bending in salt conditions and a reduced salt-avoidance response. Our results suggest that extensin modification via Hyp-arabinosylation is a unique salt-specific cellular process required for the directional response of roots exposed to salinity.

2.
Plant Cell Environ ; 47(2): 460-481, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37876364

RESUMO

Hydathodes are usually associated with water exudation in plants. However, foliar water uptake (FWU) through the hydathodes has long been suspected in the leaf-succulent genus Crassula (Crassulaceae), a highly diverse group in southern Africa, and, to our knowledge, no empirical observations exist in the literature that unequivocally link FWU to hydathodes in this genus. FWU is expected to be particularly beneficial on the arid western side of southern Africa, where up to 50% of Crassula species occur and where periodically high air humidity leads to fog and/or dew formation. To investigate if hydathode-mediated FWU is operational in different Crassula species, we used the apoplastic fluorescent tracer Lucifer Yellow in combination with different imaging techniques. Our images of dye-treated leaves confirm that hydathode-mediated FWU does indeed occur in Crassula and that it might be widespread across the genus. Hydathodes in Crassula serve as moisture-harvesting structures, besides their more common purpose of guttation, an adaptation that has likely played an important role in the evolutionary history of the genus. Our observations suggest that ability for FWU is independent of geographical distribution and not restricted to arid environments under fog influence, as FWU is also operational in Crassula species from the rather humid eastern side of southern Africa. Our observations point towards no apparent link between FWU ability and overall leaf surface wettability in Crassula. Instead, the hierarchically sculptured leaf surfaces of several Crassula species may facilitate FWU due to hydrophilic leaf surface microdomains, even in seemingly hydrophobic species. Overall, these results confirm the ecophysiological relevance of hydathode-mediated FWU in Crassula and reassert the importance of atmospheric humidity for some arid-adapted plant groups.


Assuntos
Crassulaceae , Água , Água/fisiologia , Folhas de Planta/fisiologia , Evolução Biológica , África Austral
3.
Physiol Plant ; 175(5): e14007, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882271

RESUMO

Cell wall traits are believed to be a key component of the succulent syndrome, an adaptive syndrome to drought, yet the variability of such traits remains largely unknown. In this study, we surveyed the leaf polysaccharide and glycoprotein composition in a wide sampling of Crassula species that occur naturally along an aridity gradient in southern Africa, and we interpreted its adaptive significance in relation to growth form and arid adaptation. To study the glycomic diversity, we sampled leaf material from 56 Crassula taxa and performed comprehensive microarray polymer profiling to obtain the relative content of cell wall polysaccharides and glycoproteins. This analysis was complemented by the determination of monosaccharide composition and immunolocalization in leaf sections using glycan-targeting antibodies. We found that compact and non-compact Crassula species occupy distinct phenotypic spaces in terms of leaf glycomics, particularly in regard to rhamnogalacturonan I, its arabinan side chains, and arabinogalactan proteins (AGPs). Moreover, these cell wall components also correlated positively with increasing aridity, which suggests that they are likely advantageous in terms of arid adaptation. These differences point to compact Crassula species having more elastic cell walls with plasticizing properties, which can be interpreted as an adaptation toward increased drought resistance. Furthermore, we report an intracellular pool of AGPs associated with oil bodies and calcium oxalate crystals, which could be a peculiarity of Crassula and could be linked to increased drought resistance. Our results indicate that glycomics may be underlying arid adaptation and drought resistance in succulent plants.


Assuntos
Folhas de Planta , Polissacarídeos , Plantas , Parede Celular/metabolismo
4.
J Exp Bot ; 73(8): 2290-2307, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35167681

RESUMO

Succulent plants represent a large functional group of drought-resistant plants that store water in specialized tissues. Several co-adaptive traits accompany this water-storage capacity to constitute the succulent syndrome. A widely reported anatomical adaptation of cell walls in succulent tissues allows them to fold in a regular fashion during extended drought, thus preventing irreversible damage and permitting reversible volume changes. Although ongoing research on crop and model species continuously reports the importance of cell walls and their dynamics in drought resistance, the cell walls of succulent plants have received relatively little attention to date, despite the potential of succulents as natural capital to mitigate the effects of climate change. In this review, we summarize current knowledge of cell walls in drought-avoiding succulents and their effects on tissue biomechanics, water relations, and photosynthesis. We also highlight the existing knowledge gaps and propose a hypothetical model for regulated cell wall folding in succulent tissues upon dehydration. Future perspectives of methodological development in succulent cell wall characterization, including the latest technological advances in molecular and imaging techniques, are also presented.


Assuntos
Secas , Fotossíntese , Adaptação Fisiológica , Parede Celular , Água
5.
Proc Natl Acad Sci U S A ; 116(17): 8597-8602, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30944225

RESUMO

In plants, postembryonic formation of new organs helps shape the adult organism. This requires the tight regulation of when and where a new organ is formed and a coordination of the underlying cell divisions. To build a root system, new lateral roots are continuously developing, and this process requires the tight coordination of asymmetric cell division in adjacent pericycle cells. We identified EXPANSIN A1 (EXPA1) as a cell wall modifying enzyme controlling the divisions marking lateral root initiation. Loss of EXPA1 leads to defects in the first asymmetric pericycle cell divisions and the radial swelling of the pericycle during auxin-driven lateral root formation. We conclude that a localized radial expansion of adjacent pericycle cells is required to position the asymmetric cell divisions and generate a core of small daughter cells, which is a prerequisite for lateral root organogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Divisão Celular , Raízes de Plantas , Arabidopsis/citologia , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Divisão Celular/genética , Divisão Celular/fisiologia , Parede Celular/genética , Parede Celular/fisiologia , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Transcriptoma
6.
J Sci Food Agric ; 102(8): 3379-3392, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34820844

RESUMO

BACKGROUND: During winemaking, after extraction from the skins, anthocyanins and tannins adsorb onto the pulp flesh cell walls. The present study aimed to quantify the amounts adsorbed and their impact on wine composition, the impact of variety and ethanol on adsorption, and whether the presence of anthocyanins plays a role and impacts tannin adsorption. RESULTS: Anthocyanin and tannin fractions obtained by mimicking winemaking conditions were mixed with fresh flesh cell walls of two varieties: Carignan and Grenache. Adsorption isotherms were measured. Adsorption of tannins was higher with Carignan than with Grenache and decreased when the ethanol content increased. In comparison, anthocyanins were adsorbed in small amounts, and their mixing with tannins had no impact on their adsorption. The differences were related to differences in pulp cell wall composition, particularly in terms of extensins and arabinans. CONCLUSION: Adsorption of tannins, which can reach 50% of the initial amount, depends on the pulp cell wall composition. This needs to be investigated further. © 2021 Society of Chemical Industry.


Assuntos
Vitis , Vinho , Adsorção , Antocianinas/análise , Parede Celular/química , Etanol/análise , Frutas/química , Taninos/análise , Vitis/química , Vinho/análise
7.
J Biol Chem ; 295(31): 10581-10592, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32493777

RESUMO

Plant arabinogalactan proteins (AGPs) are a diverse group of cell surface- and wall-associated glycoproteins. Functionally important AGP glycans are synthesized in the Golgi apparatus, but the relationships among their glycosylation levels, processing, and functionalities are poorly understood. Here, we report the identification and functional characterization of two Golgi-localized exo-ß-1,3-galactosidases from the glycosyl hydrolase 43 (GH43) family in Arabidopsis thaliana GH43 loss-of-function mutants exhibited root cell expansion defects in sugar-containing growth media. This root phenotype was associated with an increase in the extent of AGP cell wall association, as demonstrated by Yariv phenylglycoside dye quantification and comprehensive microarray polymer profiling of sequentially extracted cell walls. Characterization of recombinant GH43 variants revealed that the exo-ß-1,3-galactosidase activity of GH43 enzymes is hindered by ß-1,6 branches on ß-1,3-galactans. In line with this steric hindrance, the recombinant GH43 variants did not release galactose from cell wall-extracted glycoproteins or AGP-rich gum arabic. These results indicate that the lack of exo-ß-1,3-galactosidase activity alters cell wall extensibility in roots, a phenotype that could be explained by the involvement of galactosidases in AGP glycan biosynthesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Galactosiltransferases/metabolismo , Glicosídeo Hidrolases/metabolismo , Mucoproteínas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Galactosiltransferases/genética , Glicosídeo Hidrolases/genética , Mucoproteínas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética
8.
Nat Prod Rep ; 37(7): 919-961, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31971193

RESUMO

Covering: Up to 2019Phenolic cross-links and phenolic inter-unit linkages result from the oxidative coupling of two hydroxycinnamates or two molecules of tyrosine. Free dimers of hydroxycinnamates, lignans, play important roles in plant defence. Cross-linking of bound phenolics in the plant cell wall affects cell expansion, wall strength, digestibility, degradability, and pathogen resistance. Cross-links mediated by phenolic substituents are particularly important as they confer strength to the wall via the formation of new covalent bonds, and by excluding water from it. Four biopolymer classes are known to be involved in the formation of phenolic cross-links: lignins, extensins, glucuronoarabinoxylans, and side-chains of rhamnogalacturonan-I. Lignins and extensins are ubiquitous in streptophytes whereas aromatic substituents on xylan and pectic side-chains are commonly assumed to be particular features of Poales sensu lato and core Caryophyllales, respectively. Cross-linking of phenolic moieties proceeds via radical formation, is catalyzed by peroxidases and laccases, and involves monolignols, tyrosine in extensins, and ferulate esters on xylan and pectin. Ferulate substituents, on xylan in particular, are thought to be nucleation points for lignin polymerization and are, therefore, of paramount importance to wall architecture in grasses and for the development of technology for wall disassembly, e.g. for the use of grass biomass for production of 2nd generation biofuels. This review summarizes current knowledge on the intra- and extracellular acylation of polysaccharides, and inter- and intra-molecular cross-linking of different constituents. Enzyme mediated lignan in vitro synthesis for pharmaceutical uses are covered as are industrial exploitation of mutant and transgenic approaches to control cell wall cross-linking.


Assuntos
Parede Celular/química , Fenóis/química , Plantas/química , Sequência de Carboidratos
9.
BMC Biotechnol ; 19(1): 36, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208390

RESUMO

BACKGROUND: CRISPR/Cas9 is widely used for precise genetic editing in various organisms. CRISPR/Cas9 editing may in many plants be hampered by the presence of complex and high ploidy genomes and inefficient or poorly controlled delivery of the CRISPR/Cas9 components to gamete cells or cells with regenerative potential. Optimized strategies and methods to overcome these challenges are therefore in demand. RESULTS: In this study we investigated the feasibility of improving CRISPR/Cas9 editing efficiency by Fluorescence Activated Cell Sorting (FACS) of protoplasts. We used Agrobacterium infiltration in leaves of Nicotiana benthamiana for delivery of viral replicons for high level expression of gRNAs designed to target two loci in the genome, NbPDS and NbRRA, together with the Cas9 nuclease in fusion with the 2A self-splicing sequence and GFP (Cas9-2A-GFP). Protoplasts isolated from the infiltrated leaves were then subjected to FACS for selection of GFP enriched protoplast populations. This procedure resulted in a 3-5 fold (from 20 to 30% in unsorted to more than 80% in sorted) increase in mutation frequencies as evidenced by restriction enzyme analysis and the Indel Detection by Amplicon Analysis, which allows for high throughput profiling and quantification of the generated mutations. CONCLUSIONS: FACS of protoplasts expressing GFP tagged CRISPR/Cas9, delivered through A. tumefaciens leaf infiltration, facilitated clear CRISPR/Cas9 mediated mutation enrichment in selected protoplast populations.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Proteínas de Fluorescência Verde/metabolismo , Nicotiana/metabolismo , Folhas de Planta/metabolismo , Protoplastos/metabolismo , Citometria de Fluxo , Fluorescência , Proteínas de Fluorescência Verde/genética , Microscopia de Fluorescência , Mutação , Folhas de Planta/citologia , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Protoplastos/citologia , Nicotiana/citologia , Nicotiana/genética
10.
Plant Cell Environ ; 42(8): 2458-2471, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30980422

RESUMO

Plants have evolved a multitude of adaptations to survive extreme conditions. Succulent plants have the capacity to tolerate periodically dry environments, due to their ability to retain water in a specialized tissue, termed hydrenchyma. Cell wall polysaccharides are important components of water storage in hydrenchyma cells. However, the role of the cell wall and its polysaccharide composition in relation to drought resistance of succulent plants are unknown. We investigate the drought response of leaf-succulent Aloe (Asphodelaceae) species using a combination of histological microscopy, quantification of water content, and comprehensive microarray polymer profiling. We observed a previously unreported mode of polysaccharide and cell wall structural dynamics triggered by water shortage. Microscopical analysis of the hydrenchyma cell walls revealed highly regular folding patterns indicative of predetermined cell wall mechanics in the remobilization of stored water and the possible role of homogalacturonan in this process. The in situ distribution of mannans in distinct intracellular compartments during drought, for storage, and apparent upregulation of pectins, imparting flexibility to the cell wall, facilitate elaborate cell wall folding during drought stress. We conclude that cell wall polysaccharide composition plays an important role in water storage and drought response in Aloe.


Assuntos
Aloe/fisiologia , Mananas/metabolismo , Água/metabolismo , Aloe/citologia , Aloe/metabolismo , Parede Celular/metabolismo , Mananas/análise , Polissacarídeos/metabolismo , Polissacarídeos/fisiologia , Estresse Fisiológico
11.
Biomacromolecules ; 20(1): 443-453, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30525515

RESUMO

Cellulose fibers can be freed from the cell-wall skeleton via high-shear homogenization, to produce cellulose nanofibers (CNF) that can be used, for example, as the reinforcing phase in composite materials. Nanofiber production from agro-industrial byproducts normally involves harsh chemical-pretreatments and high temperatures to remove noncellulosic polysaccharides (20-70% of dry weight). However, this is expensive for large-scale processing and environmentally damaging. An enzyme-only pretreatment to obtain CNF from agro-industrial byproducts (potato and sugar beet) was developed with targeted commercial enzyme mixtures. It is hypothesized that cellulose can be isolated from the biomass, using enzymes only, due to the low lignin content, facilitating greater liberation of CNF via high-shear homogenization. Comprehensive Microarray Polymer Profiling (CoMPP) measured remaining extractable polysaccharides, showing that the enzyme-pretreatment was more successful at removing noncellulosic polysaccharides than alkaline- or acid-hydrolysis alone. While effective alone, the effect of the enzyme-pretreatment was bolstered via combination with a mild high-pH pretreatment. Dynamic rheology was used to estimate the proportion of CNF in resultant suspensions. Enzyme-pretreated suspensions showed 4-fold and 10-fold increases in the storage modulus for potato and sugar beet, respectively, compared to untreated samples. A greener yet facile method for producing CNF from vegetable waste is presented here.


Assuntos
Biotecnologia/métodos , Celulose/análogos & derivados , Resíduos Industriais , Nanofibras/química , Verduras/química , Beta vulgaris/química , Biocatálise , Hidrólise , Solanum tuberosum/química
12.
Plant Biotechnol J ; 15(5): 581-593, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27775869

RESUMO

Lignin is a major polymer in the secondary plant cell wall and composed of hydrophobic interlinked hydroxyphenylpropanoid units. The presence of lignin hampers conversion of plant biomass into biofuels; plants with modified lignin are therefore being investigated for increased digestibility. The bacterium Sphingomonas paucimobilis produces lignin-degrading enzymes including LigD, LigF and LigG involved in cleaving the most abundant lignin interunit linkage, the ß-aryl ether bond. In this study, we expressed the LigD, LigF and LigG (LigDFG) genes in Arabidopsis thaliana to introduce postlignification modifications into the lignin structure. The three enzymes were targeted to the secretory pathway. Phenolic metabolite profiling and 2D HSQC NMR of the transgenic lines showed an increase in oxidized guaiacyl and syringyl units without concomitant increase in oxidized ß-aryl ether units, showing lignin bond cleavage. Saccharification yield increased significantly in transgenic lines expressing LigDFG, showing the applicability of our approach. Additional new information on substrate specificity of the LigDFG enzymes is also provided.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Lignina/metabolismo , Sphingomonas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica de Plantas , Engenharia Genética/métodos , Glucose/metabolismo , Lignina/química , Espectroscopia de Ressonância Magnética , Redes e Vias Metabólicas/genética , Plantas Geneticamente Modificadas/genética
13.
Clin Oral Implants Res ; 28(3): 298-307, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26988403

RESUMO

INTRODUCTION: A major determinant of successful osseointegration of endosseous implants is the surface of the implant, which influences the cellular response of the surrounding tissues. A new strategy to improve osseointegration and bone healing is biochemical stimulation by surface nanocoatings that may increase adhesion of bone proteins, and bone cells at the implant surface. Nanocoating with pectins, plant cell wall-derived polysaccharides, is frequently done using rhamnogalacturonan-I (RG-I). AIM: The aim of the study was to evaluate the effect of nanocoating titanium implants with plant cell wall-derived rhamnogalacturonan-I, on bone healing and osseointegration. MATERIAL AND METHODS: Machined titanium implants were coated with three modifications of rhamnogalacturonan-I (RG-I). Chemical and physical surface properties were examined before insertion of nanocoated implants (n = 96) into the left and right tibia of rabbits. Machined titanium implants without RG-I nanocoating were used as controls (n = 32). Total number of 128 implants was placed in tibias of 16 rabbits. Fluorochrome bone labels, calcein green and alizarin red S were given intravenously after 9 and 12 days, respectively. The bone response to the nanocoated implants was analyzed qualitatively and quantitatively after 2, 4, 6, and 8 weeks of healing using light microscopy and histomorphometric methods. RESULTS: The RG-I coating influenced the surface chemical composition; wettability and roughness, making the surface more hydrophilic without any major effect on surface micro roughness compared to control implant surfaces. The different modifications of pectin RG-I did not significantly enhance bone healing and osseointegration analyzed after 2, 4, 6, and 8 weeks of healing compared to control implants. Although the qualitative analyses of the fluorochromes indicated a higher activity of bone formation in the mineralization front at the early stage, after 9 and 12 days at the RG-I nanocoated implants compared to the control implants although no significant quantitative difference was demonstrated. CONCLUSION: The present study showed that nanocoating of titanium implants with pectin RG-Is did not significantly enhance bone healing and osseointegration when placed in rabbit tibia bone.


Assuntos
Implantação Dentária Endóssea , Implantes Dentários , Pectinas , Titânio/química , Animais , Materiais Revestidos Biocompatíveis/química , Planejamento de Prótese Dentária , Implantes Experimentais , Osseointegração , Osteogênese/fisiologia , Coelhos , Propriedades de Superfície
14.
Plant Biotechnol J ; 12(4): 492-502, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24428422

RESUMO

Pectin is a complex polysaccharide and an integral part of the primary plant cell wall and middle lamella, contributing to cell wall mechanical strength and cell adhesion. To understand the structure-function relationships of pectin in the cell wall, a set of transgenic potato lines with altered pectin composition was analysed. The expression of genes encoding enzymes involved in pectin acetylation, degradation of the rhamnogalacturonan backbone and type and length of neutral side chains, arabinan and galactan in particular, has been altered. Upon crossing of different transgenic lines, some transgenes were not transmitted to the next generation when these lines were used as a pollen donor, suggesting male sterility. Viability of mature pollen was severely decreased in potato lines with reduced pectic arabinan, but not in lines with altered galactan side chains. Anthers and pollen of different developmental stages were microscopically examined to study the phenotype in more detail. Scanning electron microscopy of flowers showed collapsed pollen grains in mature anthers and in earlier stages cytoplasmic protrusions at the site of the of kin pore, eventually leading to bursting of the pollen grain and leaking of the cytoplasm. This phenomenon is only observed after the microspores are released and the tapetum starts to degenerate. Timing of the phenotype indicates a role for pectic arabinan side chains during remodelling of the cell wall when the pollen grain is maturing and dehydrating.


Assuntos
Parede Celular/metabolismo , Pectinas/metabolismo , Pólen/citologia , Pólen/crescimento & desenvolvimento , Polissacarídeos/metabolismo , Solanum tuberosum/citologia , Segregação de Cromossomos , Cruzamentos Genéticos , Dosagem de Genes , Monossacarídeos/metabolismo , Fenótipo , Infertilidade das Plantas/genética , Tubérculos/citologia , Tubérculos/metabolismo , Plantas Geneticamente Modificadas , Pólen/anatomia & histologia , Pólen/ultraestrutura , Solanum tuberosum/genética , Solanum tuberosum/ultraestrutura , Transformação Genética , Transgenes/genética
15.
J Biol Chem ; 287(15): 11911-23, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22334671

RESUMO

Mucin-type O-glycosylation is an important post-translational modification that confers a variety of biological properties and functions to proteins. This post-translational modification has a particularly complex and differentially regulated biosynthesis rendering prediction and control of where O-glycans are attached to proteins, and which structures are formed, difficult. Because plants are devoid of GalNAc-type O-glycosylation, we have assessed requirements for establishing human GalNAc O-glycosylation de novo in plants with the aim of developing cell systems with custom-designed O-glycosylation capacity. Transient expression of a Pseudomonas aeruginosa Glc(NAc) C4-epimerase and a human polypeptide GalNAc-transferase in leaves of Nicotiana benthamiana resulted in GalNAc O-glycosylation of co-expressed human O-glycoprotein substrates. A chimeric YFP construct containing a 3.5 tandem repeat sequence of MUC1 was glycosylated with up to three and five GalNAc residues when co-expressed with GalNAc-T2 and a combination of GalNAc-T2 and GalNAc-T4, respectively, as determined by mass spectrometry. O-Glycosylation was furthermore demonstrated on a tandem repeat of MUC16 and interferon α2b. In plants, prolines in certain classes of proteins are hydroxylated and further substituted with plant-specific O-glycosylation; unsubstituted hydroxyprolines were identified in our MUC1 construct. In summary, this study demonstrates that mammalian type O-glycosylation can be established in plants and that plants may serve as a host cell for production of recombinant O-glycoproteins with custom-designed O-glycosylation. The observed hydroxyproline modifications, however, call for additional future engineering efforts.


Assuntos
Engenharia Genética , Nicotiana/genética , Processamento de Proteína Pós-Traducional , Acetilgalactosamina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Antígeno Ca-125/biossíntese , Antígeno Ca-125/genética , Carboidratos Epimerases/biossíntese , Carboidratos Epimerases/genética , Clonagem Molecular , Galactosiltransferases , Genes Reporter , Glicoproteínas/biossíntese , Glicoproteínas/genética , Glicosilação , Humanos , Interferons/biossíntese , Interferons/genética , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mucinas/biossíntese , N-Acetilgalactosaminiltransferases/biossíntese , N-Acetilgalactosaminiltransferases/genética , Fragmentos de Peptídeos/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Pró-Colágeno-Prolina Dioxigenase/genética , Pseudomonas aeruginosa/enzimologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Nicotiana/enzimologia , Nicotiana/metabolismo , Polipeptídeo N-Acetilgalactosaminiltransferase
16.
Plant Physiol ; 160(1): 450-63, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22791304

RESUMO

Glycosylation is the most abundant and complex posttranslational modification to be considered for recombinant production of therapeutic proteins. Mucin-type (N-acetylgalactosamine [GalNAc]-type) O-glycosylation is found in eumetazoan cells but absent in plants and yeast, making these cell types an obvious choice for de novo engineering of this O-glycosylation pathway. We previously showed that transient implementation of O-glycosylation capacity in plants requires introduction of the synthesis of the donor substrate UDP-GalNAc and one or more polypeptide GalNAc-transferases for incorporating GalNAc residues into proteins. Here, we have stably engineered O-glycosylation capacity in two plant cell systems, soil-grown Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum) Bright Yellow-2 suspension culture cells. Efficient GalNAc O-glycosylation of two stably coexpressed substrate O-glycoproteins was obtained, but a high degree of proline hydroxylation and hydroxyproline-linked arabinosides, on a mucin (MUC1)-derived substrate, was also observed. Addition of the prolyl 4-hydroxylase inhibitor 2,2-dipyridyl, however, effectively suppressed proline hydroxylation and arabinosylation of MUC1 in Bright Yellow-2 cells. In summary, stably engineered mammalian type O-glycosylation was established in transgenic plants, demonstrating that plants may serve as host cells for the production of recombinant O-glycoproteins. However, the present stable implementation further strengthens the notion that elimination of endogenous posttranslational modifications may be needed for the production of protein therapeutics.


Assuntos
Acetilgalactosamina/metabolismo , Arabidopsis/metabolismo , Engenharia Genética/métodos , Mucina-1/metabolismo , Nicotiana/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Bactérias/metabolismo , Técnicas de Cultura de Células/métodos , Meios de Cultura/metabolismo , Glicosilação , Humanos , Hidroxilação , Proteínas Luminescentes/metabolismo , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Prolina/metabolismo , Estabilidade Proteica , Proteólise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nicotiana/citologia , Nicotiana/genética
17.
Digit Health ; 9: 20552076231191004, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37588159

RESUMO

Objective: Among hospitalised geriatric patients, only half are computer users. However, many of them refrain from using telehealth solutions. This study aimed to investigate geriatric patients' computer and Internet habits and digital literacy and their associations with stress levels and frequency of Internet use. Methods: Inpatients and outpatients aged 65 years or older, all computer users, were consecutively surveyed. Besides information about computer and Internet habits, computer support, and computer stress, the survey also collected information about digital literacy using the electronic Health Literacy Assessment toolkit. Results: A total of 124 computer users with a mean age of 80.6 ± 7.4 years participated in the study from 1 October to 1 December 2019. Most patients received computer support from their children and grandchildren, whereas 6% did not seek support. They found themselves 'most familiar with using a keyboard' (79%), 59% 'were unfamiliar with the Copy Paste function', and only one-third 'were open to new ways of using computers'. Digital literacy was associated with the frequency of Internet use (P = 0.001), and higher digital literacy was associated with less computer stress (P = 0.01). Conclusions: Geriatric computer users are challenged by their basic computer skills, which may influence their choice of participation in telehealth solutions. If telehealth solutions are to succeed among geriatric patients, individualised computer support based on their basic computer skills and user-friendly computer devices are a prerequisite. For ongoing support, it is also necessary to introduce people close to the patient to telehealth solutions.

18.
Food Chem ; 406: 135023, 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-36470080

RESUMO

Concentrations of anthocyanins and tannins after extraction from berries in wines and from skin macerations in model solutions have been studied for two grape varieties, two maturation levels and two vintages berries. Characterization of the cell wall polysaccharides has also been performed, the classical method based on the analysis of the neutral sugars after depolymerization being completed by a comprehensive microarray polymer profiling (CoMPP). Extraction was lower in model solutions than in wines, with the same ranking: non acylated anthocyanins> tannins > p-coumaroylated anthocyanins. The polysaccharidic composition suggested a role of homogalacturonans, rhamnogalacturonans and extensins in the extraction process. A global explanation of the interactions between anthocyanins, tannins and polysaccharides is proposed.


Assuntos
Vitis , Vinho , Taninos/análise , Antocianinas/análise , Frutas/química , Vinho/análise , Polissacarídeos/análise , Parede Celular/química
19.
Planta ; 236(1): 185-96, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22293853

RESUMO

A mung bean (Vigna radiata) pectin acetyl esterase (CAA67728) was heterologously expressed in tubers of potato (Solanum tuberosum) under the control of the granule-bound starch synthase promoter or the patatin promoter in order to probe the significance of O-acetylation on cell wall and tissue properties. The recombinant tubers showed no apparent macroscopic phenotype. The enzyme was recovered from transgenic tubers using a high ionic strength buffer and the extract was active against a range of pectic substrates. Partial in vivo de-acetylation of cell wall polysaccharides occurred in the transformants, as shown by a 39% decrease in the degree of acetylation (DA) of tuber cell wall material (CWM). Treatment of CWM using a combination of endo-polygalacturonase and pectin methyl esterase extracted more pectin polymers from the transformed tissue compared to wild type. The largest effect of the pectin acetyl esterase (68% decrease in DA) was seen in the residue from this extraction, suggesting that the enzyme is preferentially active on acetylated pectin that is tightly bound to the cell wall. The effects of acetylation on tuber mechanical properties were investigated by tests of failure under compression and by determination of viscoelastic relaxation spectra. These tests suggested that de-acetylation resulted in a stiffer tuber tissue and a stronger cell wall matrix, as a result of changes to a rapidly relaxing viscoelastic component. These results are discussed in relation to the role of pectin acetylation in primary cell walls and its implications for industrial uses of potato fibres.


Assuntos
Parede Celular/metabolismo , Esterases/metabolismo , Tubérculos/metabolismo , Solanum tuberosum/enzimologia , Solanum tuberosum/genética , Acetilação , Fabaceae/enzimologia , Fabaceae/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Pectinas/metabolismo , Plantas Geneticamente Modificadas , Estresse Mecânico
20.
Plant Physiol ; 155(1): 246-58, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21075961

RESUMO

Transformants and mutants with altered cell wall composition are expected to display a biomechanical phenotype due to the structural role of the cell wall. It is often quite difficult, however, to distinguish the mechanical behavior of a mutant's or transformant's cell walls from that of the wild type. This may be due to the plant's ability to compensate for the wall modification or because the biophysical method that is often employed, determination of simple elastic modulus and breakstrength, lacks the resolving power necessary for detecting subtle mechanical phenotypes. Here, we apply a method, determination of relaxation spectra, which probes, and can separate, the viscoelastic properties of different cell wall components (i.e. those properties that depend on the elastic behavior of load-bearing wall polymers combined with viscous interactions between them). A computer program, BayesRelax, that deduces relaxation spectra from appropriate rheological measurements is presented and made accessible through a Web interface. BayesRelax models the cell wall as a continuum of relaxing elements, and the ability of the method to resolve small differences in cell wall mechanical properties is demonstrated using tuber tissue from wild-type and transgenic potatoes (Solanum tuberosum) that differ in rhamnogalacturonan I side chain structure.


Assuntos
Parede Celular/fisiologia , Solanum tuberosum/citologia , Teorema de Bayes , Fenômenos Biomecânicos/fisiologia , Elasticidade , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Tubérculos/fisiologia , Reologia , Solanum tuberosum/fisiologia , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa