Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 606(7913): 272-275, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35606565

RESUMO

Nearly half of all stars similar to our Sun are in binary or multiple systems1, which may affect the evolution of the stars and their protoplanetary disks during their earliest stages. NGC 1333-IRAS2A is a young, Class 0, low-mass protostellar system located in the Perseus molecular cloud2. It is known to drive two bipolar outflows that are almost perpendicular to each other on the sky3,4 and is resolved into binary components, VLA1 and VLA2, through long wavelength continuum observations5. Here we report spatially and spectrally resolved observations of a range of molecular species. We compare these to detailed magnetohydrodynamic simulations: the comparisons show that inhomogeneous accretion onto the circumstellar disks occurs in episodic bursts, driving a wobbling jet. We conclude that binarity and multiplicity in general strongly affect the properties of the emerging stars, as well as the physical and chemical structures of the protoplanetary disks and therefore potentially any emerging planetary systems.

2.
Nature ; 540(7633): 406-409, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27974756

RESUMO

Young stars are associated with prominent outflows of molecular gas. The ejection of gas is believed to remove angular momentum from the protostellar system, permitting young stars to grow by the accretion of material from the protostellar disk. The underlying mechanism for outflow ejection is not yet understood, but is believed to be closely linked to the protostellar disk. Various models have been proposed to explain the outflows, differing mainly in the region where acceleration of material takes place: close to the protostar itself ('X-wind', or stellar wind), in a larger region throughout the protostellar disk (disk wind), or at the interface between the two. Outflow launching regions have so far been probed only by indirect extrapolation because of observational limits. Here we report resolved images of carbon monoxide towards the outflow associated with the TMC1A protostellar system. These data show that gas is ejected from a region extending up to a radial distance of 25 astronomical units from the central protostar, and that angular momentum is removed from an extended region of the disk. This demonstrates that the outflowing gas is launched by an extended disk wind from a Keplerian disk.

3.
Proc Natl Acad Sci U S A ; 110(22): 8819-23, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23671077

RESUMO

Refractory inclusions [calcium-aluminum-rich inclusions, (CAIs)] represent the oldest Solar System solids and provide information regarding the formation of the Sun and its protoplanetary disk. CAIs contain evidence of now extinct short-lived radioisotopes (e.g., (26)Al, (41)Ca, and (182)Hf) synthesized in one or multiple stars and added to the protosolar molecular cloud before or during its collapse. Understanding how and when short-lived radioisotopes were added to the Solar System is necessary to assess their validity as chronometers and constrain the birthplace of the Sun. Whereas most CAIs formed with the canonical abundance of (26)Al corresponding to (26)Al/(27)Al of ∼5 × 10(-5), rare CAIs with fractionation and unidentified nuclear isotope effects (FUN CAIs) record nucleosynthetic isotopic heterogeneity and (26)Al/(27)Al of <5 × 10(-6), possibly reflecting their formation before canonical CAIs. Thus, FUN CAIs may provide a unique window into the earliest Solar System, including the origin of short-lived radioisotopes. However, their chronology is unknown. Using the (182)Hf-(182)W chronometer, we show that a FUN CAI recording a condensation origin from a solar gas formed coevally with canonical CAIs, but with (26)Al/(27)Al of ∼3 × 10(-6). The decoupling between (182)Hf and (26)Al requires distinct stellar origins: steady-state galactic stellar nucleosynthesis for (182)Hf and late-stage contamination of the protosolar molecular cloud by a massive star(s) for (26)Al. Admixing of stellar-derived (26)Al to the protoplanetary disk occurred during the epoch of CAI formation and, therefore, the (26)Al-(26)Mg systematics of CAIs cannot be used to define their formation interval. In contrast, our results support (182)Hf homogeneity and chronological significance of the (182)Hf-(182)W clock.


Assuntos
Alumínio/química , Evolução Planetária , Meteoroides , Radioisótopos/química , Datação Radiométrica/métodos , Sistema Solar/química , Fracionamento Químico , Microanálise por Sonda Eletrônica , Háfnio/química , Isótopos/química , Oxigênio/química , Tungstênio/química
4.
Sci Adv ; 3(8): e1700407, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28808680

RESUMO

The most abundant components of primitive meteorites (chondrites) are millimeter-sized glassy spherical chondrules formed by transient melting events in the solar protoplanetary disk. Using Pb-Pb dates of 22 individual chondrules, we show that primary production of chondrules in the early solar system was restricted to the first million years after the formation of the Sun and that these existing chondrules were recycled for the remaining lifetime of the protoplanetary disk. This finding is consistent with a primary chondrule formation episode during the early high-mass accretion phase of the protoplanetary disk that transitions into a longer period of chondrule reworking. An abundance of chondrules at early times provides the precursor material required to drive the efficient and rapid formation of planetary objects via chondrule accretion.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa