Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Environ Manage ; 236: 561-570, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30771675

RESUMO

Wastewater and power utilities in the United States have an enormous opportunity to collaborate on the mutually beneficial uses of reclaimed water. Despite close proximity to wastewater facilities, only a limited number of power plants are currently using municipal reclaimed water for cooling tower and boiler applications. Through a review of the literature, this document aims at creating a more perspicuous understanding of the reuse of reclaimed water for power plant applications, particularly as pertains to those associated with cooling towers and boilers, by highlighting the drivers of current implementation, regulatory issues and treatment goals, and available treatment technologies. Through an in-depth analysis of case studies, the review also highlights key examples of reclaimed water reuse projects at power utilities together with the related benefits and challenges.


Assuntos
Purificação da Água , Água , Centrais Elétricas , Eliminação de Resíduos Líquidos , Águas Residuárias , Abastecimento de Água
2.
J Environ Manage ; 221: 1-9, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29793207

RESUMO

Peracetic acid (PAA) is a strong oxidant/bactericide that has been applied in various industries (e.g., food processing, pharmaceuticals, medical device sterilization, etc.) as a disinfectant. There is increasing interest in using PAA for wastewater disinfection because it does not form halogenated byproducts, and no post-treatment quenching is required. Previous studies have demonstrated good efficiency in controlling bacteria in wastewater, but limited information is available for viruses, especially those hosted by mammals (e.g., norovirus). Therefore, a study on the infectivity reduction of murine norovirus (MNV) was undertaken to evaluate the disinfection efficacy of PAA or UV alone and in combination with UV irradiation in undisinfected secondary effluent from a municipal wastewater reclamation facility (MWW) and phosphate buffer solution (PBS) at pH 7. Experiments employing MS2 bacteriophage were also performed in parallel for comparison purposes. MS2 infectivity reduction was found to be lower than MNV infectivity reduction for each condition studied - PAA, PAA + UV, and UV disinfection. These data suggest that MS2 may not be an appropriate surrogate to accurately predict the reduction of MNV infectivity. UV irradiation, in a dose range of 5-250 mJ/cm2, provided linear log inactivation (-log (N/N0)) with a regression slope (cm2mJ-1) of 0.031-0.034 and 0.165-0.202 for MS2 and MNV, respectively. UV irradiation provided similar inactivation for MS2 and MNV in both suspensions (PBS or MWW). Low infectivity reduction of MS2 was observed when PAA was used alone at a practical dose of 1.5 mg/L and below. A greater reduction of both MNV and MS2 was observed in PAA disinfection experiments using PBS as the microbial suspension medium, than in secondary effluent. Similar results were observed in PAA + UV experiments, in which greater synergistic effects were found in PBS than in MWW. Results of OH radical formation experiments suggest the presence of radical scavengers in MWW, which resulted in less opportunity for MNV and MS2 to encounter OHradicals. This study also demonstrated that the type of water can have a substantial impact on wastewater disinfection when employing PAA or PAA + UV treatment due to the matrix effect and the presence of radical scavengers, respectively. The results from this study could be employed to aid in the conceptual design of PAA and UV disinfection facilities, especially when norovirus is the organism of concern.


Assuntos
Levivirus , Norovirus , Raios Ultravioleta , Águas Residuárias , Animais , Desinfecção , Camundongos , Ácido Peracético
3.
J Environ Manage ; 228: 416-428, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30243077

RESUMO

Water conduits have a large untapped potential to recapture energy for small hydroelectric generation, which can substantially reduce grid electricity consumption and/or provide renewable energy to water agencies. Over the past decade, there has been a recent technological renaissance in off-the-shelf "water-to-wire" turbine technologies including reaction, impulse, and hydrokinetic turbines that target the sub 1-MW in-conduit hydroelectric market. However, adoption of small hydropower technologies remain limited in water and wastewater utility sector, possibly due to the lack of market penetration and exposure. Moreover, information about newly developed small hydropower technologies in the last 5-10 years for in-conduit applications are highly dispersed in the literature. As such, this paper is a comprehensive review on recent technological innovations and trends in hydropower generation from water conduits. Sixteen turbine technologies (eight conventional turbines and eight emerging turbines) are assessed and compared based on their potential benefits and challenges, technology readiness levels, as well as potential sites for installations in diversion structures, potable and irrigation water distribution systems, and wastewater outfalls. Although conventional turbines are considered to be more robust, the modular design of the newer turbines potentially offers a more cost effective solution and better scaling-up capability. Selected case studies on the application of conventional and new turbines for pipelines are also are also reviewed and discussed.


Assuntos
Água , Energia Renovável , Tecnologia
4.
Appl Environ Microbiol ; 83(22)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28887415

RESUMO

Human noroviruses (hNoVs) are a known public health concern associated with the consumption of leafy green vegetables. While a number of studies have investigated pathogen reduction on the surfaces of leafy greens during the postharvest washing process, there remains a paucity of data on the level of treatment needed to inactivate viruses in the wash water, which is critical for preventing cross-contamination. The objective of this study was to quantify the susceptibility of hNoV genotype I (GI), hNoV GII, murine norovirus (MNV), and bacteriophage MS2 to free chlorine in whole leaf, chopped romaine, and shredded iceberg lettuce industrial leafy green wash waters, each sampled three times over a 4-month period. A suite of kinetic inactivation models was fit to the viral reduction data to aid in quantification of concentration-time (CT) values. Results indicate that 3-log10 infectivity reduction was achieved at CT values of less than 0.2 mg · min/liter for MNV and 2.5 mg · min/liter for MS2 in all wash water types. CT values for 2-log10 molecular reduction of hNoV GI in whole leaf and chopped romaine wash waters were 1.5 and 0.9 mg · min/liter, respectively. For hNoV GII, CT values were 13.0 and 7.5 mg · min/liter, respectively. In shredded iceberg wash water, 3-log10 molecular reduction was not observed for any virus over the time course of experiments. These findings demonstrate that noroviruses may exhibit genogroup-dependent resistance to free chlorine and emphasize the importance of distinguishing between genogroups in hNoV persistence studies.IMPORTANCE Postharvest washing of millions of pounds of leafy greens is performed daily in industrial processing facilities with the intention of removing dirt, debris, and pathogenic microorganisms prior to packaging. Modest inactivation of pathogenic microorganisms (less than 2 log10) is known to occur on the surfaces of leafy greens during washing. Therefore, the primary purpose of the sanitizing agent is to maintain microbial quality of postharvest processing water in order to limit cross-contamination. This study modeled viral inactivation data and quantified the free-chlorine CT values that processing facilities must meet in order to achieve the desired level of hNoV GI and GII reduction. Disinfection experiments were conducted in industrial leafy green wash water collected from a full-scale fresh produce processing facility in the United States, and hNoV GI and GII results were compared with surrogate molecular and infectivity data.


Assuntos
Cloro/farmacologia , Desinfecção/métodos , Lactuca/virologia , Norovirus/efeitos dos fármacos , Folhas de Planta/virologia , Animais , Desinfecção/instrumentação , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Manipulação de Alimentos , Genótipo , Humanos , Lactuca/crescimento & desenvolvimento , Camundongos , Norovirus/classificação , Norovirus/crescimento & desenvolvimento , Norovirus/isolamento & purificação , Folhas de Planta/crescimento & desenvolvimento
5.
Environ Sci Technol ; 51(5): 2972-2981, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28165216

RESUMO

Chlorination has long been used for disinfection of municipal wastewater (MWW) effluent while the use peracetic acid (PAA) has been proposed more recently in the United States. Previous work has demonstrated the bactericidal effectiveness of PAA and monochloramine in wastewater, but limited information is available for viruses, especially ones of mammalian origin (e.g., norovirus). Therefore, a comparative assessment was performed of the virucidal efficacy of PAA and monochloramine against murine norovirus (MNV) and MS2 bacteriophage in secondary effluent MWW and phosphate buffer (PB). A suite of inactivation kinetic models was fit to the viral inactivation data. Predicted concentration-time (CT) values for 1-log10 MS2 reduction by PAA and monochloramine in MWW were 1254 and 1228 mg-min/L, respectively. The 1-, 2-, and 3-log10 model predicted CT values for MNV viral reduction in MWW were 32, 47, and 69 mg-min/L for PAA and 6, 13, and 28 mg-min/L for monochloramine, respectively. Wastewater treatment plant disinfection practices informed by MS2 inactivation data will likely be protective for public health but may overestimate CT values for reduction of MNV. Additionally, equivalent CT values in PB resulted in greater viral reduction which indicate that viral inactivation data in laboratory grade water may not be generalizable to MWW applications.


Assuntos
Ácido Peracético , Águas Residuárias , Animais , Desinfetantes , Desinfecção , Humanos , Levivirus , Camundongos , Norovirus , Inativação de Vírus
6.
Environ Sci Technol ; 51(20): 11918-11927, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-28910089

RESUMO

The objective of this study was to characterize human norovirus (hNoV) GI and GII reductions during disinfection by peracetic acid (PAA) and monochloramine in secondary wastewater (WW) and phosphate buffer (PB) as assessed by reverse transcription-qPCR (RT-qPCR). Infectivity and RT-qPCR reductions are also presented for surrogate viruses murine norovirus (MNV) and bacteriophage MS2 under identical experimental conditions to aid in interpretation of hNoV molecular data. In WW, RT-qPCR reductions were less than 0.5 log10 for all viruses at concentration-time (CT) values up to 450 mg-min/L except for hNoV GI, where 1 log10 reduction was observed at CT values of less than 50 mg-min/L for monochloramine and 200 mg-min/L for PAA. In PB, hNoV GI and MNV exhibited comparable resistance to PAA and monochloramine with CT values for 2 log10 RT-qPCR reduction between 300 and 360 mg-min/L. Less than 1 log10 reduction was observed for MS2 and hNoV GII in PB at CT values for both disinfectants up to 450 mg-min/L. Our results indicate that hNoVs exhibit genogroup dependent resistance and that disinfection practices targeting hNoV GII will result in equivalent or greater reductions for hNoV GI. These data provide valuable comparisons between hNoV and surrogate molecular signals that can begin the process of informing regulators and engineers on WW treatment plant design and operational practices necessary to inactivate hNoVs.


Assuntos
Cloraminas , Norovirus , Ácido Peracético , Águas Residuárias , Animais , Biomarcadores , Desinfecção , Humanos , Camundongos
7.
Water Environ Res ; 88(11): 1973-1984, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28661317

RESUMO

Wastewater collection system lift station operations require a substantial amount of energy, and can be as a major source of greenhouse gas (GHG) emissions for wastewater utilities. Many lift stations operate with local or basic controls that have no hydraulic relationship with other collection system lift stations. This study demonstrated a unique energy-efficient control method of lift station operation that utilizes hydraulic modeling results generated from site-specific conditions to optimize the pumping units and reduce simultaneous running cycles on a real time basis. The pilot tests conducted at two pilot areas of the wastewater collection system of a utility in Florida demonstrated that the energy savings obtained through such operational optimization was 14 to 17% for the two pilot areas investigated. The study demonstrated that substantial annual energy costs and GHG emissions reduction could be achieved utilizing this method, particularly for utilities located in flat geographic locations where hundreds of lift stations are required to transfer wastewater.


Assuntos
Poluentes Atmosféricos , Computadores , Conservação de Recursos Energéticos , Engenharia Sanitária , Instalações de Eliminação de Resíduos , Monitoramento Ambiental , Efeito Estufa , Pilotos , Águas Residuárias , Purificação da Água/métodos
8.
Environ Sci Technol ; 49(22): 13724-32, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26461069

RESUMO

Holistic management of water and energy resources through energy and water quality management systems (EWQMSs) have traditionally aimed at energy cost reduction with limited or no emphasis on energy efficiency or greenhouse gas minimization. This study expanded the existing EWQMS framework and determined the impact of different management strategies for energy cost and energy consumption (e.g., carbon footprint) reduction on system performance at two drinking water utilities in California (United States). The results showed that optimizing for cost led to cost reductions of 4% (Utility B, summer) to 48% (Utility A, winter). The energy optimization strategy was successfully able to find the lowest energy use operation and achieved energy usage reductions of 3% (Utility B, summer) to 10% (Utility A, winter). The findings of this study revealed that there may be a trade-off between cost optimization (dollars) and energy use (kilowatt-hours), particularly in the summer, when optimizing the system for the reduction of energy use to a minimum incurred cost increases of 64% and 184% compared with the cost optimization scenario. Water age simulations through hydraulic modeling did not reveal any adverse effects on the water quality in the distribution system or in tanks from pump schedule optimization targeting either cost or energy minimization.


Assuntos
Água Potável , Abastecimento de Água/economia , Abastecimento de Água/métodos , California , Simulação por Computador , Custos e Análise de Custo , Qualidade da Água
9.
J Environ Manage ; 153: 108-20, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25688476

RESUMO

Holistic management of water and energy resources is critical for water utilities facing increasing energy prices, water supply shortage and stringent regulatory requirements. In the early 1990s, the concept of an integrated Energy and Water Quality Management System (EWQMS) was developed as an operational optimization framework for solving water quality, water supply and energy management problems simultaneously. Approximately twenty water utilities have implemented an EWQMS by interfacing commercial or in-house software optimization programs with existing control systems. For utilities with an installed EWQMS, operating cost savings of 8-15% have been reported due to higher use of cheaper tariff periods and better operating efficiencies, resulting in the reduction in energy consumption of ∼6-9%. This review provides the current state-of-knowledge on EWQMS typical structural features and operational strategies and benefits and drawbacks are analyzed. The review also highlights the challenges encountered during installation and implementation of EWQMS and identifies the knowledge gaps that should motivate new research efforts.


Assuntos
Conservação de Recursos Energéticos , Fontes Geradoras de Energia , Qualidade da Água , Recursos Hídricos , Modelos Teóricos , Abastecimento de Água/normas
10.
Sci Total Environ ; 946: 174351, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38960165

RESUMO

Irrigation with reclaimed water alleviates water supply shortages, but excess application often results in impairment of contiguous waterbodies. This project investigated the potential use of iohexol, an iodinated contrast media used in medical imaging, together with its bio- and phototransformation products as unique reconnaissance markers of reclaimed water irrigation intrusion at three golf courses within the state of Florida. Inter-facility iohexol concentrations measured in reclaimed waters ranged over ~2 orders of magnitude while observed intra-facility seasonal differences were ≤1 order of magnitude. A ~50 % reduction in iohexol was observed post-disinfection for reclaimed water facilities utilizing UV light while none was observed with use of chlorine. Iohexol biotransformation products were observed to decline or shift to lower molecular weight compounds when exposed to UV light but not during disinfection using chlorine. Iohexol biotransformation products were observed in most of the samples but were more prevalent in samples collected during the dry season. Much fewer iohexol phototransformation products were observed in chlorinated reclaimed water, and they were only observed in UV light irradiated reclaimed water when the pre-disinfectant iohexol concentration was ≥5000 ng/L or from solar exposure of reclaimed water spiked with 10 µM of iohexol. For the Hillsborough golf course overlaying an aquifer, the groundwater did not contain iohexol or phototransformation products but did contain biotransformation products. It is not known if these biotransformation products are from active or historical intrusion. The additional presence of sucralose in the aquifer suggests that intrusion has occurred within the past 3 years. This study demonstrates three crucial points in attempting to utilize iohexol to denote reclaimed water intrusion from irrigation overapplication: (1) interpretable results are obtained when iohexol concentrations in the reclaimed water employed for irrigation are ≥1000 ng/L, with higher concentrations in the range of ≥5000 ng/L better able to meet analytical sensitivity requirements after further dilution or degradation in the environment; (2) it is beneficial to assess iohexol transformation products in tandem with iohexol monitoring to account for environmental transformations of iohexol during storage and transport to the receiving water of concern; and (3) inclusion of monitoring for sucralose, an artificial sweetener ubiquitous in wastewater sources that is comparatively stable in the environment, can aid in interpretating whether reclaimed water intrusion based on identification of iohexol and transformation products in the receiving water is attributable to historic or ongoing irrigation overapplications.


Assuntos
Monitoramento Ambiental , Iohexol , Poluentes Químicos da Água , Iohexol/análise , Iohexol/análogos & derivados , Poluentes Químicos da Água/análise , Florida , Irrigação Agrícola , Meios de Contraste/análise , Eliminação de Resíduos Líquidos/métodos , Desinfecção
11.
Sci Total Environ ; 954: 176593, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39353494

RESUMO

A novel framework has been developed which summarizes the efficacy of treatment technologies for emerging contaminants (ECs) based on the general mitigation mechanisms of Removal, Inactivation/Degradation, and Destruction (i.e., RIDD). The RIDD framework allows for a concise critical evaluation of the efficacy of treatment processes for their mitigation potential, and provides an efficient methodology for drinking water system managers to identify knowledge gaps related to the management of ECs in water treatment with respect to current technologies available in practice. Additionally, the RIDD framework provides an understanding of the treatment processes which provide: (1) broad spectrum treatment, (2) effective mitigation for certain categories of contaminants or under certain circumstances, or (3) little or no mitigation of ECs. In the proposed format, this information is intended to assist water managers to make more informed treatment decisions. Four categories of ECs noted in recent literature as presently concerning to drinking water utilities, including both anthropogenic and microbial contaminants, were used in this study to provide examples of RIDD framework application. In many cases, broad-spectrum treatment barriers (e.g., high-pressure membranes) are expected to provide cost-effective management of a suite of ECs, which then can be compared to the costs and practicality of additional treatment barriers for individual ECs (e.g., selective ion exchange resins or tailored biological processes). Additionally, understanding the typical performance of existing treatment processes can help assist with capital planning for alternative treatment processes or upgrades, or for developing novel treatment approaches at the watershed scale such as integrated urban water management and One Water frameworks.

12.
Sci Total Environ ; 941: 173710, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830423

RESUMO

Legionella is an opportunistic waterborne pathogen that is difficult to eradicate in colonized drinking water pipes. Legionella control is further challenged by aging water infrastructure and lack of evidence-based guidance for building treatment. This study assessed multiple premise water remediation approaches designed to reduce Legionella pneumophila within a residential building located in an aging, urban drinking water system over a two-year period. Samples (n = 745) were collected from hot and cold-water lines and quantified via most probable number culture. Building-level treatment approaches included three single heat shocks, three single chemical shocks, and continuous low-level chemical disinfection in the potable water system. The building was highly colonized with L. pneumophila with 71 % L. pneumophila positivity. Single heat shocks had a statistically significant L. pneumophila reduction one day post treatment but no significant L. pneumophila reduction at one week, two weeks, and four weeks post treatment. The first two chemical shocks resulted in statistically significant L. pneumophila reduction at two days and four weeks post treatment, but there was a significant L. pneumophila increase at four weeks following the third chemical shock. Continuous low-level chemical disinfection resulted in statistically significant L. pneumophila reduction at ten weeks post treatment implementation. This demonstrates that in a building highly colonized with L. pneumophila, sustained remediation is best achieved using continuous low-level chemical treatment.


Assuntos
Água Potável , Microbiologia da Água , Purificação da Água , Água Potável/microbiologia , Purificação da Água/métodos , Desinfecção/métodos , Legionella pneumophila , Abastecimento de Água , Legionella , Recuperação e Remediação Ambiental/métodos
13.
medRxiv ; 2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37502988

RESUMO

Legionella is an opportunistic waterborne pathogen that is difficult to eradicate in colonized drinking water pipes. Legionella control is further challenged by aging water infrastructure and lack of evidence-based guidance for building treatment. This study assessed multiple premise water remediation approaches designed to reduce Legionella pneumophila (Lp) within a residential building located in an aging, urban drinking water system over a two-year period. Samples (n=745) were collected from hot and cold-water lines and quantified via most probable number culture. Building-level treatment approaches included three single heat shocks (HS), three single chemical shocks (CS), and continuous low-level chemical disinfection (CCD) in the potable water system. The building was highly colonized with Lp with 71% Lp positivity. Single HS had a statistically significant Lp reduction one day post treatment but no significant Lp reduction one, two, and four weeks post treatment. The first two CS resulted in statistically significant Lp reduction at two days and four weeks post treatment, but there was a significant Lp increase at four weeks following the third CS. CCD resulted in statistically significant Lp reduction ten weeks post treatment implementation. This demonstrates that in a building highly colonized with Lp, sustained remediation is best achieved using CCD.

14.
Environ Sci Technol ; 46(19): 10711-7, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22924557

RESUMO

Colloidal natural organic matter (NOM) is an important foulant to low-pressure membranes (LPMs) employed in drinking water treatment. Removal of colloidal NOM by magnetic ion exchange (MIEX), coagulation, and integrated MIEX and coagulation was investigated in this study to determine the relationship between colloidal NOM removal and membrane fouling reduction. The results showed that coagulation did not selectively remove colloidal NOM and the optimal coagulant dose was primarily determined by the concentration of humic substances. Comparatively, MIEX pretreatment preferentially removed humic substances and reduced the coagulant dose needed for colloidal NOM removal as a result of coagulation stoichiometry. A matched-pair analysis showed that integrated MIEX and coagulation pretreatment at much lower coagulant doses was as effective as coagulation in reducing membrane fouling. It is concluded that integrated MIEX and coagulation is potentially a viable pretreatment approach to reduce membrane fouling and in general removal of colloidal NOM in feedwater is an effective approach for membrane fouling control and should be considered in the research, development, and application of novel LPM-based treatment processes.


Assuntos
Membranas Artificiais , Purificação da Água/instrumentação , Purificação da Água/métodos , Troca Iônica , Magnetismo
15.
J Environ Manage ; 109: 80-92, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-22699026

RESUMO

The promulgation of numeric nutrient criteria for evaluating impairment of waterbodies in Florida is underway. Adherence to the water quality standards needed to meet these criteria will potentially require substantial allocations of public and private resources in order to better control nutrient (i.e., nitrogen and phosphorus) releases from contributing sources. Major sources of nutrients include atmospheric deposition (195-380 mg-N/m(2)/yr, 6 to 16 mg-P/m(2)/yr), reclaimed water irrigation (0.13-29 mg-N/L, 0.02 to 6 mg-P/L), septic systems (3.3 × 10(3)-6.68 × 10(3) g-N/person/yr, 0.49 × 10(3)-0.85 × 10(3) g-P/person/yr) and fertilizer applications (8 × 10(6)-24 × 10(6) mg-N/m(2)/yr). Estimated nitrogen loadings to the Florida environment, as calculated from the above rates are as follows: 5.9 × 10(9)-9.4 × 10(9) g-N/yr from atmospheric deposition, 1.2 × 10(8)-2.6 × 10(10) g-N/yr from reclaimed water, 2.4 × 10(10)-4.9 × 10(10) g-N/year from septic systems, and 1.4 × 10(11) g-N/yr from fertilizer application. Similarly, source specific phosphorus loading calculations are also presented in this paper. A fraction of those nutrient inputs may reach receiving waterbodies depending upon site specific regulation on nutrient control, nutrient management practices, and environmental attenuation. In Florida, the interconnectivity of hydrologic pathways due to the karst landscape and high volumes of rainfall add to the complexity of tracking nutrient loads back to their sources. In addition to source specific nutrient loadings, this review discusses the merits of source specific markers such as elemental isotopes (boron, nitrogen, oxygen, strontium, uranium and carbon) and trace organic compounds (sucralose, gadolinium anomaly, carbamazepine, and galaxolide) in relating nutrient loads back to sources of origin. Although this review is focused in Florida, the development of source specific markers as a tool for tracing nutrient loadings back to sources of origin is applicable and of value to all other geographical locations.


Assuntos
Monitoramento Ambiental/métodos , Nitrogênio/análise , Fósforo/análise , Poluentes Químicos da Água/análise
16.
Water Sci Technol ; 66(4): 865-71, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22766879

RESUMO

Nine different membrane bioreactor (MBR) systems with different process configurations (submerged and external), membrane geometries (hollow-fiber, flat-sheet, and tubular), membrane materials (polyethersulfone (PES), polyvinylidene fluoride (PVDF), and polytetrafluoroethylene (PTFE)) and membrane nominal pore sizes (0.03-0.2 µm) were evaluated to assess the impact of influent microbial concentration, membrane pore size and membrane material and geometries on removal of microbial indicators by MBR technology. The log removal values (LRVs) for microbial indicators increased as the influent concentrations increased. Among the wide range of MBR systems evaluated, the total and fecal coliform bacteria and indigenous MS-2 coliphage were detected in 32, 9 and 15% of the samples, respectively; the 50th percentile LRVs were measured at 6.6, 5.9 and 4.5 logs, respectively. The nominal pore sizes of the membranes, membrane materials and geometries did not show a strong correlation with the LRVs.


Assuntos
Reatores Biológicos/microbiologia , Membranas Artificiais , Eliminação de Resíduos Líquidos/instrumentação , Contagem de Colônia Microbiana , Enterobacteriaceae/isolamento & purificação , Levivirus/isolamento & purificação , Porosidade , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Poluentes da Água/isolamento & purificação
17.
Water Res ; 226: 119198, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36240713

RESUMO

Widespread contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) has required drinking water producers to quickly adopt practical and efficacious treatments to limit human exposure and deleterious health outcomes. This pilot-scale study comparatively investigated PFAS adsorption behaviors in granular activated carbon (GAC) and two strong-base gel anion exchange resin (AER) columns operated in parallel over a 441-day period to treat contaminated groundwater dominated by short-chain perfluorocarboxylic acids (PFCA). Highly-resolved breakthrough profiles of homologous series of 2-8 CF2 PFCA and perfluorosulfonic acids (PFSA), including ultrashort-chain compounds and branched isomers, were measured to elucidate adsorption trends. Sample ports at intermediate bed depths could predict 50% breakthrough of compounds on an accelerated basis, but lower empty bed contact times led to conservative estimates of initial breakthrough. Homologous PFAS series displayed linear (GAC) and log-linear (AER) relationships between chain-length and breakthrough, independent of initial concentration. AERs generally outperformed GAC on a normalized bed volume basis, and this advantage widened with increasing PFAS chain-length. As designed, all treatments would have short full-scale service times (≤142 days for GAC; ≤61 days for AERs) before initial breakthrough of short-chain (2-4 CF2) PFCA. However, AER displayed far longer breakthrough times for PFSA compared to GAC (>3× treatment time), and breakthrough was not observed for PFSA with >4 CF2 in AERs. GAC had a finite molar adsorption capacity for total PFAS, leading to a stoichiometric replacement of short-chain PFCA by PFSA and longer-chain PFCA over time. AERs quickly reached a finite adsorption capacity for PFCA, but they showed substantially greater selectivity for PFSA whose capacity was not reached within the duration of the pilot. Breakthrough characteristics of keto- and unsaturated-PFSA, identified in the groundwater by suspect screening, were also evaluated in absence of reference standards. Modified PFAS structures (branched, keto-, unsaturated-) broke through faster than linear and unmodified perfluorinated structures with equal degrees of fluorination, and the effects were more pronounced in GAC compared to AERs. The results highlight that the design of robust PFAS treatment systems should consider facets beyond current PFAS targets including operational complexities and impacts of unregulated and unmonitored co-contaminants.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Purificação da Água , Humanos , Carvão Vegetal/química , Resinas de Troca Aniônica/química , Adsorção , Fluorocarbonos/análise , Purificação da Água/métodos , Poluentes Químicos da Água/análise
18.
J Hazard Mater ; 433: 128804, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35366450

RESUMO

Granular activated carbon (GAC) has proven to be a successful technology for per- and polyfluoroalkyl substances (PFAS) removal from contaminated drinking water supplies. Proper design of GAC treatment relies upon characterization of media service-life, which can change significantly depending on the PFAS contamination, treatment media, and water quality, and is often determined by fitting descriptive models to breakthrough curves. However, while common descriptive breakthrough models are favored for their ease-of-use, they have a significant shortcoming in that they are not able to properly fit PFAS desorption in competitive sorption scenarios. The present work adapts three common descriptive models to fit competitive PFAS breakthrough curves from a GAC pilot study. The adapted and original models were fit to the experimental breakthrough curves for 12 common PFAS and evaluated using adjusted R2 and reduced χ2 values. This study found that the novel adaptation of the common descriptive models successfully accounted for desorption of PFAS compounds from the GAC, accurately describing increased exposure risks due to elevated effluent levels during desorption without significantly increasing the complexity of implementing the models.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal , Fluorocarbonos/análise , Projetos Piloto , Poluentes Químicos da Água/análise
19.
Water Res ; 201: 117292, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34118648

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are compounds of emerging concern due to their persistence in the global water cycle and detection in drinking water sources. However, PFAS have been poorly studied in bottled water, especially in the United States. This study investigated the occurrence of PFAS and related factors in 101 uniquely labelled bottled water products for sale in the U.S. Products were screened for 32 target PFAS by solid phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS). Fifteen of 32 measured analytes were detected, consisting primarily of C3-C10 perfluorocarboxylic acids (PFCA) and C3-C6 and C8 perfluorosulfonic acids (PFSA). PFAS were detected above method detection limits in 39/101 tested products. The Σ32PFAS concentrations detected were 0.17-18.87 ng/L with a median of 0.98 ng/L; 97% of samples were below 5 ng/L. PFCA (83%) and short-chain perfluoroalkyl acids (PFAA) containing 5 or less CF2 groups (67%) were more prevalent on a mass basis than PFSA and longer-chain PFAA, respectively. Ultrashort-chain PFPrA, measured for the first time in bottled water, accounted for the greatest individual fraction of detected PFAS mass (42%) and was found almost exclusively in products labeled as Spring water. Purified water products contained significantly less PFAS than Spring water products, which was attributed to the use of reverse osmosis (RO) treatment in the majority of Purified waters (25/35) compared to Spring waters (1/45). RO-treated products contained significantly lower Σ32PFAS, long-chain, short-chain, and PFPrA concentrations than products without RO. Although no enforceable PFAS regulations exist for bottled water in the U.S., the finding that some products approach levels of concern justify a framework for monitoring PFAS in bottled water production.


Assuntos
Água Potável , Fluorocarbonos , Poluentes Químicos da Água , Cromatografia Líquida , Monitoramento Ambiental , Fluorocarbonos/análise , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise
20.
Food Environ Virol ; 11(1): 76-89, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30430442

RESUMO

With increasing interest in peracetic acid (PAA) as a disinfectant in water treatment processes, this study determined PAA treatment effects on human noroviruses (hNoVs) genotype I (GI) and genotype II (GII) as well as effects on bacteriophage MS2 and murine norovirus (MNV) in relation to pH. Across all pH conditions, PAA achieved between 0.2 and 2.5 log10 reduction of hNoVs over 120 min contact time in buffer solution as measured by reverse transcription-qPCR (RT-qPCR). The PAA treatments produced similar RT-qPCR reductions of MS2 and MNV, in the range of 0.2-2.7 log10. Infectivity assays achieved > 4 log10 reduction of both MS2 and MNV in buffer solution after 120 min contact time. Comparing PAA activity across varying pH, disinfection at pH 8.5, in general, resulted in less reduction of infectivity and molecular signals compared to pH conditions of 6.5 and 7.5. This difference was most pronounced for reductions in infectivity of MNV and MS2, with as much as 2.7 log10 less reduction at pH 8.5 relative to lower pH conditions. This study revealed that PAA was an effective disinfectant for treatment of hNoV GI and GII, MS2 and MNV, with greatest virus reduction observed for MS2 and MNV infectivity. RT-qPCR reductions of MS2 and MNV were lower than concurrent MS2 and MNV infectivity reductions, suggesting that observed hNoV RT-qPCR reductions may underestimate reductions in hNoV infectivity achieved by PAA. Although virus disinfection by PAA occurred at all evaluated pH levels, PAA is most effective at pH 6.5-7.5.


Assuntos
Infecções por Caliciviridae/virologia , Norovirus/efeitos dos fármacos , Ácido Peracético , Desinfetantes/química , Desinfetantes/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Norovirus/genética , Norovirus/patogenicidade , Ácido Peracético/química , Ácido Peracético/farmacologia , RNA Viral/análise , RNA Viral/efeitos dos fármacos , Inativação de Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa