Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37645960

RESUMO

Oncogenic KRAS mutations are nearly ubiquitous in pancreatic ductal adenocarcinoma (PDAC), yet therapeutic attempts to target KRAS as well as its target MAPK pathway effectors have shown limited success due to the difficulty to pharmacologically target KRAS, inherent drug resistance in PDAC cells, and acquired resistance through activation of alternative mitogenic pathways such JAK-STAT and PI3K-AKT. While KRAS canonically drives the MAPK signaling pathway via RAF-MEK-ERK, it is also known to play a role in PI3K-AKT signaling. Our therapeutic study targeted the PI3K-AKT pathway with the drug Omipalisib (p110α/ß/δ/γ and mTORC1/2 inhibitor) in combination with MAPK pathway targeting drug Trametinib (MEK1/2 inhibitor) or SHP099-HCL (SHP099), which is an inhibitor of the KRAS effector SHP2. Western blot analysis demonstrated that application of Trametinib or SHP099 alone selectively blocked ERK phosphorylation (pERK) but failed to suppress phosphorylated AKT (pAKT) and in some instances increased pAKT levels. Conversely, Omipalisib alone successfully inhibited pAKT but failed to suppress pERK. Therefore, we hypothesized that a combination therapeutic comprised of Omipalisib with either Trametinib or SHP099 would inhibit two prominent mitogenic pathways, MEK and PI3K-AKT, to more effectively suppress pancreatic cancer. In vitro studies demonstrated that both Omipalisib/Trametinib and Omipalisib/SHP099 combination therapeutic strategies were generally more effective than treatment with each drug individually at reducing proliferation, colony formation, and cell migration compared to vehicle controls. Additionally, we found that while combination Omipalisib/SHP099 treatment reduced implanted tumor growth in vivo , the Omipalisib/Trametinib treatment was significantly more effective. Therefore, we additionally tested the Omipalisib/Trametinib combination therapeutic in the highly aggressive PKT (Ptf1a cre , LSL-Kras G12D , TGFbR2 fl/fl ) spontaneous mouse model of PDAC. We subsequently found that PKT mice treated with the Omipalisib/Trametinib combination therapeutic survived significantly longer than mice treated with either drug alone, and more than doubled the mean survival time of vehicle control mice. Altogether, our data support the importance of a dual treatment strategy targeting both MAPK and PI3K-AKT pathways.

2.
J Cell Commun Signal ; 17(3): 575-590, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36074246

RESUMO

Adipocytes are the most abundant cell type in the adipose tissue, and their dysfunction is a significant driver of obesity-related pathologies, such as cancer. The mechanisms that (1) drive the maintenance and secretory activity of adipocytes and (2) mediate the cancer cellular response to the adipocyte-derived factors are not fully understood. To address that gap of knowledge, we investigated how alterations in Src homology region 2-containing protein (SHP2) activity affect adipocyte function and tumor crosstalk. We found that phospho-SHP2 levels are elevated in adipose tissue of obese mice, obese patients, and differentiating adipocytes. Immunofluorescence and immunoprecipitation analyses as well as in-silico protein-protein interaction modeling demonstrated that SHP2 associates with PDHA1, and that a positive association promotes a reactive oxygen species (ROS)-driven adipogenic program. Accordingly, this SHP2-PDHA1-ROS regulatory axis was crucial for adipocyte maintenance and secretion of interleukin-6 (IL-6), a key cancer-promoting cytokine. Mature adipocytes treated with an inhibitor for SHP2, PDHA1, or ROS exhibited an increased level of pro-lipolytic and thermogenic proteins, corresponding to an increased glycerol release, but a suppression of secreted IL-6. A functional analysis of adipocyte-cancer cell crosstalk demonstrated a decreased migration, invasion, and a slight suppression of cell cycling, corresponding to a reduced growth of pancreatic cancer cells exposed to conditioned media (CM) from mature adipocytes previously treated with inhibitors for SHP2/PDHA1/ROS. Importantly, PDAC cell growth stimulation in response to adipocyte CM correlated with PDHA1 induction but was suppressed by a PDHA1 inhibitor. The data point to a novel role for (1) SHP2-PDHA1-ROS in adipocyte maintenance and secretory activity and (2) PDHA1 as a regulator of the pancreatic cancer cells response to adipocyte-derived factors.

3.
bioRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37292762

RESUMO

Chronic pain is a substantial health burden and options for treating chronic pain remain minimally effective. Ketogenic diets are emerging as well-tolerated, effective therapeutic strategies in preclinical models of chronic pain, especially diabetic neuropathy. We tested whether a ketogenic diet is antinociceptive through ketone oxidation and related activation of ATP-gated potassium (KATP) channels in mice. We demonstrate that consumption of a ketogenic diet for one week reduced evoked nocifensive behaviors (licking, biting, lifting) following intraplantar injection of different noxious stimuli (methylglyoxal, cinnamaldehyde, capsaicin, or Yoda1) in mice. A ketogenic diet also decreased the expression of p-ERK, an indicator of neuronal activation in the spinal cord, following peripheral administration of these stimuli. Using a genetic mouse model with deficient ketone oxidation in peripheral sensory neurons, we demonstrate that protection against methylglyoxal-induced nociception by a ketogenic diet partially depends on ketone oxidation by peripheral neurons. Injection of tolbutamide, a KATP channel antagonist, prevented ketogenic diet-mediated antinociception following intraplantar capsaicin injection. Tolbutamide also restored the expression of spinal activation markers in ketogenic diet-fed, capsaicin-injected mice. Moreover, activation of KATP channels with the KATP channel agonist diazoxide reduced pain-like behaviors in capsaicin-injected, chow-fed mice, similar to the effects observed with a ketogenic diet. Diazoxide also reduced the number of p-ERK+ cells in capsaicin-injected mice. These data support a mechanism that includes neuronal ketone oxidation and activation of KATP channels to provide ketogenic diet-related analgesia. This study also identifies KATP channels as a new target to mimic the antinociceptive effects of a ketogenic diet.

4.
Neurobiol Pain ; 14: 100138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099277

RESUMO

Chronic pain is a substantial health burden and options for treating chronic pain remain minimally effective. Ketogenic diets are emerging as well-tolerated, effective therapeutic strategies in preclinical models of chronic pain, especially diabetic neuropathy. We tested whether a ketogenic diet is antinociceptive through ketone oxidation and related activation of ATP-gated potassium (KATP) channels in mice. We demonstrate that consumption of a ketogenic diet for one week reduced evoked nocifensive behaviors (licking, biting, lifting) following intraplantar injection of different noxious stimuli (methylglyoxal, cinnamaldehyde, capsaicin, or Yoda1) in mice. A ketogenic diet also decreased the expression of p-ERK, an indicator of neuronal activation in the spinal cord, following peripheral administration of these stimuli. Using a genetic mouse model with deficient ketone oxidation in peripheral sensory neurons, we demonstrate that protection against methylglyoxal-induced nociception by a ketogenic diet partially depends on ketone oxidation by peripheral neurons. Injection of tolbutamide, a KATP channel antagonist, prevented ketogenic diet-mediated antinociception following intraplantar capsaicin injection. Tolbutamide also restored the expression of spinal activation markers in ketogenic diet-fed, capsaicin-injected mice. Moreover, activation of KATP channels with the KATP channel agonist diazoxide reduced pain-like behaviors in capsaicin-injected, chow-fed mice, similar to the effects observed with a ketogenic diet. Diazoxide also reduced the number of p-ERK+ cells in capsaicin-injected mice. These data support a mechanism that includes neuronal ketone oxidation and activation of KATP channels to provide ketogenic diet-related analgesia. This study also identifies KATP channels as a new target to mimic the antinociceptive effects of a ketogenic diet.

5.
bioRxiv ; 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36711538

RESUMO

Ketogenic diets are emerging as protective interventions in preclinical and clinical models of somatosensory nervous system disorders. Additionally, dysregulation of succinyl-CoA 3-oxoacid CoA-transferase 1 (SCOT, encoded by Oxct1 ), the fate-committing enzyme in mitochondrial ketolysis, has recently been described in Friedreich's ataxia and amyotrophic lateral sclerosis. However, the contribution of ketone metabolism in the normal development and function of the somatosensory nervous system remains poorly characterized. We generated sensory neuron-specific, Advillin-Cre knockout of SCOT (Adv-KO-SCOT) mice and characterized the structure and function of their somatosensory system. We used histological techniques to assess sensory neuronal populations, myelination, and skin and spinal dorsal horn innervation. We also examined cutaneous and proprioceptive sensory behaviors with the von Frey test, radiant heat assay, rotarod, and grid-walk tests. Adv-KO-SCOT mice exhibited myelination deficits, altered morphology of putative Aδ soma from the dorsal root ganglion, reduced cutaneous innervation, and abnormal innervation of the spinal dorsal horn compared to wildtype mice. Synapsin 1-Cre-driven knockout of Oxct1 confirmed deficits in epidermal innervation following a loss of ketone oxidation. Loss of peripheral axonal ketolysis was further associated with proprioceptive deficits, yet Adv-KO-SCOT mice did not exhibit drastically altered cutaneous mechanical and thermal thresholds. Knockout of Oxct1 in peripheral sensory neurons resulted in histological abnormalities and severe proprioceptive deficits in mice. We conclude that ketone metabolism is essential for the development of the somatosensory nervous system. These findings also suggest that decreased ketone oxidation in the somatosensory nervous system may explain the neurological symptoms of Friedreich's ataxia.

6.
bioRxiv ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37645755

RESUMO

Background: CXCR1/2 inhibitors are being implemented with immunotherapies in PDAC clinical trials. Cytokines responsible for stimulating these receptors include CXCL ligands, typically secreted by activated immune cells, fibroblasts, and even adipocytes. Obesity has been linked to poor patient outcome and altered anti-tumor immunity. Adipose-derived cytokines and chemokines have been implicated as potential drivers of tumor cell immune evasion, suggesting a possibility of susceptibility to targeting specifically in the context of obesity. Methods: RNA-sequencing of human PDAC cell lines was used to assess differential influences on the cancer cell transcriptome after treatment with conditioned media from peri-pancreatic adipose tissue of lean and obese PDAC patients. The adipose-induced secretome of PDAC cells was then assessed by cytokine arrays and ELISAs. Lentiviral transduction and CRISPR-Cas9 was used to knock out CXCL5 from a murine PDAC cell line for orthotopic tumor studies in diet-induced obese, syngeneic mice. Flow cytometry was used to define the immune profiles of tumors. Anti-PD-1 immune checkpoint blockade therapy was administered to alleviate T cell exhaustion and invoke an immune response, while the mice were monitored at endpoint for differences in tumor size. Results: The chemokine CXCL5 was secreted in response to stimulation of PDAC cells with human adipose conditioned media (hAT-CM). PDAC CXCL5 secretion was induced by either IL-1ß or TNF, but neutralization of both was required to limit secretion. Ablation of CXCL5 from tumors promoted an immune phenotype susceptible to PD-1 inhibitor therapy. While application of anti-PD-1 treatment to control tumors failed to alter tumor growth, knockout CXCL5 tumors were diminished. Conclusions: In summary, our findings show that known adipokines TNF and IL-1ß can stimulate CXCL5 release from PDAC cells in vitro. In vivo , CXCL5 depletion alone is sufficient to promote T cell infiltration into tumors in an obese setting, but requires checkpoint blockade inhibition to alleviate tumor burden. DATA AVAILABILITY STATEMENT: Raw and processed RNAseq data will be further described in the GEO accession database ( awaiting approval from GEO for PRJ number ). Additional raw data is included in the supplemental material and available upon reasonable request. WHAT IS ALREADY KNOWN ON THIS TOPIC: Obesity is linked to a worsened patient outcome and immunogenic tumor profile in PDAC. CXCR1/2 inhibitors have begun to be implemented in combination with immune checkpoint blockade therapies to promote T cell infiltration under the premise of targeting the myeloid rich TME. WHAT THIS STUDY ADDS: Using in vitro/ex vivo cell and tissue culture-based assays with in vivo mouse models we have identified that adipose derived IL-1ß and TNF can promote tumor secretion of CXCL5 which acts as a critical deterrent to CD8 T cell tumor infiltration, but loss of CXCL5 also leads to a more immune suppressive myeloid profile. HOW THIS STUDY MIGHT AFFECT RESEARCH PRACTICE OR POLICY: This study highlights a mechanism and emphasizes the efficacy of single CXCR1/2 ligand targeting that could be beneficial to overcoming tumor immune-evasion even in the obese PDAC patient population.

7.
Exp Neurol ; 365: 114428, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37100111

RESUMO

Ketogenic diets are emerging as protective interventions in preclinical and clinical models of somatosensory nervous system disorders. Additionally, dysregulation of succinyl-CoA 3-oxoacid CoA-transferase 1 (SCOT, encoded by Oxct1), the fate-committing enzyme in mitochondrial ketolysis, has recently been described in Friedreich's ataxia and amyotrophic lateral sclerosis. However, the contribution of ketone metabolism in the normal development and function of the somatosensory nervous system remains poorly characterized. We generated sensory neuron-specific, Advillin-Cre knockout of SCOT (Adv-KO-SCOT) mice and characterized the structure and function of their somatosensory system. We used histological techniques to assess sensory neuronal populations, myelination, and skin and spinal dorsal horn innervation. We also examined cutaneous and proprioceptive sensory behaviors with the von Frey test, radiant heat assay, rotarod, and grid-walk tests. Adv-KO-SCOT mice exhibited myelination deficits, altered morphology of putative Aδ soma from the dorsal root ganglion, reduced cutaneous innervation, and abnormal innervation of the spinal dorsal horn compared to wildtype mice. Synapsin 1-Cre-driven knockout of Oxct1 confirmed deficits in epidermal innervation following a loss of ketone oxidation. Loss of peripheral axonal ketolysis was further associated with proprioceptive deficits, yet Adv-KO-SCOT mice did not exhibit drastically altered cutaneous mechanical and thermal thresholds. Knockout of Oxct1 in peripheral sensory neurons resulted in histological abnormalities and severe proprioceptive deficits in mice. We conclude that ketone metabolism is essential for the development of the somatosensory nervous system. These findings also suggest that decreased ketone oxidation in the somatosensory nervous system may explain the neurological symptoms of Friedreich's ataxia.


Assuntos
Ataxia de Friedreich , Animais , Camundongos , Ataxia de Friedreich/patologia , Camundongos Knockout , Cetonas , Oxirredução , Células Receptoras Sensoriais/patologia
8.
Cell Death Dis ; 13(2): 114, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121743

RESUMO

Obesity creates a localized inflammatory reaction in the adipose, altering secretion of adipocyte-derived factors that contribute to pathologies including cancer. We have previously shown that adiponectin inhibits pancreatic cancer by antagonizing leptin-induced STAT3 activation. Yet, the effects of adiponectin on pancreatic cancer cell metabolism have not been addressed. In these studies, we have uncovered a novel metabolic function for the synthetic adiponectin-receptor agonist, AdipoRon. Treatment of PDAC cells with AdipoRon led to mitochondrial uncoupling and loss of ATP production. Concomitantly, AdipoRon-treated cells increased glucose uptake and utilization. This metabolic switch further correlated with AMPK mediated inhibition of the prolipogenic factor acetyl coenzyme A carboxylase 1 (ACC1), which is known to initiate fatty acid catabolism. Yet, measurements of fatty acid oxidation failed to detect any alteration in response to AdipoRon treatment, suggesting a deficiency for compensation. Additional disruption of glycolytic dependence, using either a glycolysis inhibitor or low-glucose conditions, demonstrated an impairment of growth and survival of all pancreatic cancer cell lines tested. Collectively, these studies provide evidence that pancreatic cancer cells utilize metabolic plasticity to upregulate glycolysis in order to adapt to suppression of oxidative phosphorylation in the presence of AdipoRon.


Assuntos
Neoplasias Pancreáticas , Receptores Artificiais , Adiponectina/metabolismo , Adiponectina/farmacologia , Ácidos Graxos , Glicólise , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Piperidinas , Receptores de Adiponectina/metabolismo , Receptores Artificiais/metabolismo , Neoplasias Pancreáticas
9.
Elife ; 82019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31348003

RESUMO

Atxn7, a subunit of SAGA chromatin remodeling complex, is subject to polyglutamine expansion at the amino terminus, causing spinocerebellar ataxia type 7 (SCA7), a progressive retinal and neurodegenerative disease. Within SAGA, the Atxn7 amino terminus anchors Non-stop, a deubiquitinase, to the complex. To understand the scope of Atxn7-dependent regulation of Non-stop, substrates of the deubiquitinase were sought. This revealed Non-stop, dissociated from Atxn7, interacts with Arp2/3 and WAVE regulatory complexes (WRC), which control actin cytoskeleton assembly. There, Non-stop countered polyubiquitination and proteasomal degradation of WRC subunit SCAR. Dependent on conserved WRC interacting receptor sequences (WIRS), Non-stop augmentation increased protein levels, and directed subcellular localization, of SCAR, decreasing cell area and number of protrusions. In vivo, heterozygous mutation of SCAR did not significantly rescue knockdown of Atxn7, but heterozygous mutation of Atxn7 rescued haploinsufficiency of SCAR.


Assuntos
Citoesqueleto de Actina/metabolismo , Ataxina-7/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Endopeptidases/metabolismo , Proteínas dos Microfilamentos/metabolismo , Animais , Regulação da Expressão Gênica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa