Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 17(9): e1009790, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34543266

RESUMO

Recent studies have demonstrated that astrocytes cooperate with neurons of the brain to mediate circadian control of many rhythmic processes including locomotor activity and sleep. Transcriptional profiling studies have described the overall rhythmic landscape of the brain, but few have employed approaches that reveal heterogeneous, cell-type specific rhythms of the brain. Using cell-specific isolation of ribosome-bound RNAs in Drosophila, we constructed the first circadian "translatome" for astrocytes. This analysis identified 293 "cycling genes" in astrocytes, most with mammalian orthologs. A subsequent behavioral genetic screen identified a number of genes whose expression is required in astrocytes for normal sleep behavior. In particular, we show that certain genes known to regulate fly innate immune responses are also required for normal sleep patterns.


Assuntos
Astrócitos/metabolismo , Ritmo Circadiano , Drosophila/genética , Transcriptoma , Animais , Drosophila/imunologia , Perfilação da Expressão Gênica , Imunidade Inata , Biossíntese de Proteínas , Ribossomos/metabolismo , Transdução de Sinais , Sono
2.
PLoS Genet ; 10(9): e1004536, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25211129

RESUMO

The Drosophila homolog of Casein Kinase I δ/ε, DOUBLETIME (DBT), is required for Wnt, Hedgehog, Fat and Hippo signaling as well as circadian clock function. Extensive studies have established a critical role of DBT in circadian period determination. However, how DBT expression is regulated remains largely unexplored. In this study, we show that translation of dbt transcripts are directly regulated by a rhythmic RNA-binding protein (RBP) called LARK (known as RBM4 in mammals). LARK promotes translation of specific alternative dbt transcripts in clock cells, in particular the dbt-RC transcript. Translation of dbt-RC exhibits circadian changes under free-running conditions, indicative of clock regulation. Translation of a newly identified transcript, dbt-RE, is induced by light in a LARK-dependent manner and oscillates under light/dark conditions. Altered LARK abundance affects circadian period length, and this phenotype can be modified by different dbt alleles. Increased LARK delays nuclear degradation of the PERIOD (PER) clock protein at the beginning of subjective day, consistent with the known role of DBT in PER dynamics. Taken together, these data support the idea that LARK influences circadian period and perhaps responses of the clock to light via the regulated translation of DBT. Our study is the first to investigate translational control of the DBT kinase, revealing its regulation by LARK and a novel role of this RBP in Drosophila circadian period modulation.


Assuntos
Caseína Quinase 1 épsilon/genética , Relógios Circadianos/genética , Proteínas de Drosophila/genética , Drosophila/genética , Biossíntese de Proteínas/genética , Proteínas de Ligação a RNA/genética , Alelos , Animais , Ritmo Circadiano/genética , Escuridão , Regulação da Expressão Gênica/genética , Luz , Proteínas Circadianas Period/genética
3.
PLoS Biol ; 11(11): e1001703, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24348200

RESUMO

Genome-wide studies of circadian transcription or mRNA translation have been hindered by the presence of heterogeneous cell populations in complex tissues such as the nervous system. We describe here the use of a Drosophila cell-specific translational profiling approach to document the rhythmic "translatome" of neural clock cells for the first time in any organism. Unexpectedly, translation of most clock-regulated transcripts--as assayed by mRNA ribosome association--occurs at one of two predominant circadian phases, midday or mid-night, times of behavioral quiescence; mRNAs encoding similar cellular functions are translated at the same time of day. Our analysis also indicates that fundamental cellular processes--metabolism, energy production, redox state (e.g., the thioredoxin system), cell growth, signaling and others--are rhythmically modulated within clock cells via synchronized protein synthesis. Our approach is validated by the identification of mRNAs known to exhibit circadian changes in abundance and the discovery of hundreds of novel mRNAs that show translational rhythms. This includes Tdc2, encoding a neurotransmitter synthetic enzyme, which we demonstrate is required within clock neurons for normal circadian locomotor activity.


Assuntos
Proteínas CLOCK/fisiologia , Ritmo Circadiano , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Biossíntese de Proteínas , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Atividade Motora , NADP/metabolismo , Sistema Nervoso/citologia , Sistema Nervoso/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Proteoma/genética , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma , Tirosina Descarboxilase/genética , Tirosina Descarboxilase/metabolismo
4.
iScience ; 27(3): 109106, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38380256

RESUMO

We show that a sleep-regulating, Ig-domain protein (NKT) is secreted from Drosophila mushroom body (MB) α'/ß' neurons to act locally on other MB cell types. Pan-neuronal or broad MB expression of membrane-tethered NKT (tNkt) protein reduced sleep, like that of an NKT null mutant, suggesting blockade of a receptor mediating endogenous NKT action. In contrast, expression in neurons requiring NKT (the MB α'/ß' cells), or non-MB sleep-regulating centers, did not reduce night sleep, indicating the presence of a local MB sleep-regulating circuit consisting of communicating neural subtypes. We suggest that the leucocyte-antigen-related like (Lar) transmembrane receptor may mediate NKT action. Knockdown or overexpression of Lar in the MB increased or decreased sleep, respectively, indicating the receptor promotes wakefulness. Surprisingly, selective expression of tNkt or knockdown of Lar in MB wake-promoting cells increased rather than decreased sleep, suggesting that NKT acts on wake- as well as sleep-promoting cell types to regulate sleep.

5.
J Biol Chem ; 287(20): 16748-58, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22447936

RESUMO

A detailed structure/function analysis of Drosophila p90 ribosomal S6 kinase (S6KII) or its mammalian homolog RSK has not been performed in the context of neuronal plasticity or behavior. We previously reported that S6KII is required for normal circadian periodicity. Here we report a site-directed mutagenesis of S6KII and analysis of mutants, in vivo, that identifies functional domains and phosphorylation sites critical for the regulation of circadian period. We demonstrate, for the first time, a role for the S6KII C-terminal kinase that is independent of its known role in activation of the N-terminal kinase. Both S6KII C-terminal kinase activity and its ERK-binding domain are required for wild-type circadian period and normal phosphorylation status of the protein. In contrast, the N-terminal kinase of S6KII is dispensable for modulation of circadian period and normal phosphorylation of the protein. We also show that particular sites of S6KII phosphorylation, Ser-515 and Thr-732, are essential for normal circadian behavior. Surprisingly, the phosphorylation of S6KII residues, in vivo, does not follow a strict sequential pattern, as implied by certain cell-based studies of mammalian RSK protein.


Assuntos
Comportamento Animal/fisiologia , Relógios Circadianos/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Mutagênese Sítio-Dirigida , Mutação , Fosforilação/genética , Estrutura Terciária de Proteína , Proteínas Quinases S6 Ribossômicas 90-kDa/genética
6.
Neuron ; 55(3): 435-47, 2007 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-17678856

RESUMO

Previous studies suggest that glia may be required for normal circadian behavior, but glial factors required for rhythmicity have not been identified in any system. We show here that a circadian rhythm in Drosophila Ebony (N-beta-alanyl-biogenic amine synthetase) abundance can be visualized in adult glia and that glial expression of Ebony rescues the altered circadian behavior of ebony mutants. We demonstrate that molecular oscillator function and clock neuron output are normal in ebony mutants, verifying a role for Ebony downstream of the clock. Surprisingly, the ebony oscillation persists in flies lacking PDF neuropeptide, indicating it is regulated by an autonomous glial oscillator or another neuronal factor. The proximity of Ebony-containing glia to aminergic neurons and genetic interaction results suggest a function in dopaminergic signaling. We thus suggest a model for ebony function wherein Ebony glia participate in the clock control of dopaminergic function and the orchestration of circadian activity rhythms.


Assuntos
Encéfalo/metabolismo , Ritmo Circadiano/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/fisiologia , Atividade Motora/fisiologia , Neuroglia/metabolismo , Aminas/metabolismo , Animais , Encéfalo/citologia , Proteínas CLOCK , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dopamina/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Larva/citologia , Larva/metabolismo , Mutação , Sistema Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Peptídeo Hidrolases/metabolismo , Fenótipo , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia , Distribuição Tecidual , Transativadores/metabolismo
7.
Glia ; 59(9): 1341-50, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21732426

RESUMO

Studies of Drosophila and mammals have documented circadian changes in the morphology and biochemistry of glial cells. In addition, it is known that astrocytes of flies and mammals contain evolutionarily conserved circadian molecular oscillators that are similar to neuronal oscillators. In several sections of this review, I summarize the morphological and biochemical rhythms of glia that may contribute to circadian control. I also discuss the evidence suggesting that glia-neuron interactions may be critical for circadian timing in both flies and mammals. Throughout the review, I attempt to compare and contrast findings from these invertebrate and vertebrate models so as to provide a synthesis of current knowledge and indicate potential research avenues that may be useful for better understanding the roles of glial cells in the circadian system.


Assuntos
Ritmo Circadiano/fisiologia , Neuroglia/fisiologia , Animais , Astrócitos/fisiologia , Astrócitos/ultraestrutura , Relógios Biológicos/fisiologia , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Humanos , Neuroglia/ultraestrutura , Neurônios/fisiologia , Neurônios/ultraestrutura
8.
J Neurosci ; 29(2): 466-75, 2009 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19144847

RESUMO

There is a universal requirement for post-translational regulatory mechanisms in circadian clock systems. Previous work in Drosophila has identified several kinases, phosphatases, and an E3 ligase that are critical for determining the nuclear translocation and/or stability of clock proteins. The present study evaluated the function of p90 ribosomal S6 kinase (RSK) in the Drosophila circadian system. In mammals, RSK1 is a light- and clock-regulated kinase known to be activated by the mitogen-activated protein kinase pathway, but there is no direct evidence that it functions as a component of the circadian system. Here, we show that Drosophila S6KII RNA displays rhythms in abundance, indicative of circadian control. Importantly, an S6KII null mutant exhibits a short-period circadian phenotype that can be rescued by expression of the wild-type gene in clock neurons, indicating a role for S6KII in the molecular oscillator. Peak PER clock protein expression is elevated in the mutant, indicative of enhanced stability, whereas per mRNA level is decreased, consistent with enhanced feedback repression. Gene reporter assays show that decreased S6KII is associated with increased PER repression. Surprisingly, we demonstrate a physical interaction between S6KII and the casein kinase 2 regulatory subunit (CK2beta), suggesting a functional relationship between the two kinases. In support of such a relationship, there are genetic interactions between S6KII and CK2 mutations, in vivo, which indicate that CK2 activity is required for S6KII action. We propose that the two kinases cooperate within clock neurons to fine-tune circadian period, improving the precision of the clock mechanism.


Assuntos
Caseína Quinase II/metabolismo , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica/fisiologia , Periodicidade , Proteínas Quinases S6 Ribossômicas/metabolismo , Animais , Animais Geneticamente Modificados , Caseína Quinase II/genética , Linhagem Celular Transformada , Ritmo Circadiano/genética , Drosophila , Proteínas de Drosophila/genética , Regulação da Expressão Gênica/genética , Humanos , Atividade Motora/genética , Mutação/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , Interferência de RNA/fisiologia , RNA Mensageiro/metabolismo , Proteínas Quinases S6 Ribossômicas/genética , Transfecção
9.
Mol Cell Neurosci ; 41(2): 196-205, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19303442

RESUMO

The LARK RNA-binding protein (RBP) has well documented roles in the circadian systems of Drosophila and mammals. Recent studies have demonstrated that the Drosophila LARK RBP is associated with many mRNA targets, in vivo, including those that regulate either neurophysiology or development of the nervous system. In the present study, we have employed conditional expression techniques to distinguish developmental and physiological functions of LARK for a defined class of neurons: the Pigment-Dispersing Factor (PDF)-containing LNv clock neurons. We found that increased LARK expression during development dramatically alters the small LNv class of neurons with no obvious effects on the large LNv cells. Conversely, conditional expression of LARK at the adult stage results in altered clock protein rhythms and circadian locomotor activity, even though neural morphology is normal in such animals. Electrophysiological analyses at the larval neuromuscular junction indicate a role for LARK in regulating neuronal excitability. Altogether, our results demonstrate that LARK activity is critical for neuronal development and physiology.


Assuntos
Relógios Biológicos/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Neurônios/fisiologia , Proteínas de Ligação a RNA/metabolismo , Animais , Comportamento Animal/fisiologia , Ritmo Circadiano/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Masculino , Atividade Motora/fisiologia , Neurônios/citologia , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
10.
Wiley Interdiscip Rev Dev Biol ; 9(4): e372, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31840430

RESUMO

Glial astrocytes of vertebrates and invertebrates are important modulators of nervous system development, physiology, and behavior. In all species examined, astrocytes of the adult brain contain conserved circadian clocks, and multiple studies have shown that these glial cells participate in the regulation of circadian behavior and sleep. This short review summarizes recent work, using fruit fly (Drosophila) and mouse models, that document participation of astrocytes and their endogenous circadian clocks in the control of rhythmic behavior. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Nervous System Development > Flies.


Assuntos
Fatores de Transcrição ARNTL/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Criptocromos/genética , Proteínas de Drosophila/genética , Neuroglia/metabolismo , Proteínas Circadianas Period/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Criptocromos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Ácido Glutâmico/metabolismo , Camundongos , Neuroglia/citologia , Neurônios/citologia , Neurônios/metabolismo , Proteínas Circadianas Period/metabolismo , Receptor A1 de Adenosina/genética , Receptor A1 de Adenosina/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Sono/genética , Ácido gama-Aminobutírico/metabolismo
11.
J Neurosci ; 28(41): 10200-5, 2008 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-18842880

RESUMO

Fragile X syndrome (FXS) is the most common form of hereditary mental retardation. FXS patients have a deficit for the fragile X mental retardation protein (FMRP) that results in abnormal neuronal dendritic spine morphology and behavioral phenotypes, including sleep abnormalities. In a Drosophila model of FXS, flies lacking the dfmr1 protein (dFMRP) have abnormal circadian rhythms apparently as a result of altered clock output. In this study, we present biochemical and genetic evidence that dFMRP interacts with a known clock output component, the LARK RNA-binding protein. Our studies demonstrate physical interactions between dFMRP and LARK, that the two proteins are present in a complex in vivo, and that LARK promotes the stability of dFMRP. Furthermore, we show genetic interactions between the corresponding genes indicating that dFMRP and LARK function together to regulate eye development and circadian behavior.


Assuntos
Comportamento Animal/fisiologia , Ritmo Circadiano/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Olho/crescimento & desenvolvimento , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Ritmo Circadiano/genética , Modelos Animais de Doenças , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil , Larva/metabolismo , Proteínas de Ligação a RNA/genética
12.
Curr Biol ; 29(15): 2547-2554.e2, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31353186

RESUMO

Endogenous rhythmic behaviors are evolutionarily conserved and essential for life. In mammalian and invertebrate models, well-characterized neuronal circuits and evolutionarily conserved mechanisms regulate circadian behavior and sleep [1-4]. In Drosophila, neuronal populations located in multiple brain regions mediate arousal, sleep drive, and homeostasis (reviewed in [3, 5-7]). Similar to mammals [8], there is also evidence that fly glial cells modulate the neuronal circuits controlling rhythmic behaviors, including sleep [1]. Here, we describe a novel gene (CG14141; aka Nkt) that is required for normal sleep. NKT is a 162-amino-acid protein with a single IgC2 immunoglobulin (Ig) domain and a high-quality signal peptide [9], and we show evidence that it is secreted, similar to its C. elegans ortholog (OIG-4) [10]. We demonstrate that Nkt-null flies or those with selective knockdown in either neurons or glia have decreased and fragmented night sleep, indicative of a non-redundant requirement in both cell types. We show that Nkt is required in fly astrocytes and in a specific set of wake-promoting neurons-the mushroom body (MB) α'ß' cells that link sleep to memory consolidation [11]. Importantly, Nkt gene expression is required in the adult nervous system for normal sleep, consistent with a physiological rather than developmental function for the Ig-domain protein.


Assuntos
Astrócitos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Neurônios/metabolismo , Sono/fisiologia , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Domínios de Imunoglobulina/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino
13.
Neuron ; 34(6): 961-72, 2002 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-12086643

RESUMO

Mental retardation is a pervasive societal problem, 25 times more common than blindness for example. Fragile X syndrome, the most common form of inherited mental retardation, is caused by mutations in the FMR1 gene. Fragile X patients display neurite morphology defects in the brain, suggesting that this may be the basis of their mental retardation. Drosophila contains a single homolog of FMR1, dfxr (also called dfmr1). We analyzed the role of dfxr in neurite development in three distinct neuronal classes. We find that DFXR is required for normal neurite extension, guidance, and branching. dfxr mutants also display strong eclosion failure and circadian rhythm defects. Interestingly, distinct neuronal cell types show different phenotypes, suggesting that dfxr differentially regulates diverse targets in the brain.


Assuntos
Encéfalo/fisiologia , Proteínas de Drosophila/fisiologia , Síndrome do Cromossomo X Frágil/genética , Proteínas do Tecido Nervoso/fisiologia , Neurônios/citologia , Proteínas de Ligação a RNA , Sequência de Aminoácidos , Animais , Encéfalo/patologia , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Proteína do X Frágil da Deficiência Intelectual , Dados de Sequência Molecular , Atividade Motora/genética , Atividade Motora/fisiologia , Mutação , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neuroglia/metabolismo , Neuroglia/patologia , Neuroglia/fisiologia , Neurônios/patologia , Neurônios/fisiologia , Homologia de Sequência de Aminoácidos
14.
Curr Biol ; 15(12): 1156-63, 2005 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-15964283

RESUMO

Loss of Fragile X mental retardation protein (FMRP) function causes the highly prevalent Fragile X syndrome [1 and 2]. Identifying targets for the RNA binding FMRP is a major challenge and an important goal of research into the pathology of the disease. Perturbations in neuronal development and circadian behavior are seen in Drosophila dfmr1 mutants. Here we show that regulation of the actin cytoskeleton is under dFMRP control. dFMRP binds the mRNA of the Drosophila profilin homolog and negatively regulates Profilin protein expression. An increase in Profilin mimics the phenotype of dfmr1 mutants. Conversely, decreasing Profilin levels suppresses dfmr1 phenotypes. These data place a new emphasis on actin misregulation as a major problem in fmr1 mutant neurons.


Assuntos
Actinas/metabolismo , Encéfalo/fisiologia , Proteínas Contráteis/genética , Proteínas de Drosophila/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Células Cultivadas , Proteínas Contráteis/metabolismo , Proteínas de Drosophila/genética , Proteína do X Frágil da Deficiência Intelectual , Regulação da Expressão Gênica , Proteínas dos Microfilamentos/metabolismo , Mutação , Neurônios/metabolismo , Neurônios/patologia , Profilinas , Proteínas de Ligação a RNA/genética , Colículos Superiores/metabolismo , Colículos Superiores/patologia , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo
15.
Nat Neurosci ; 6(3): 251-7, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12563262

RESUMO

The posttranslational modification of clock proteins is critical for the function of circadian oscillators. By genetic analysis of a Drosophila melanogaster circadian clock mutant known as Andante, which has abnormally long circadian periods, we show that casein kinase 2 (CK2) has a role in determining period length. Andante is a mutation of the gene encoding the beta subunit of CK2 and is predicted to perturb CK2beta subunit dimerization. It is associated with reduced beta subunit levels, indicative of a defect in alpha:beta association and production of the tetrameric alpha2:beta2 holoenzyme. Consistent with a direct action on the clock mechanism, we show that CK2beta is localized within clock neurons and that the clock proteins Period (Per) and Timeless (Tim) accumulate to abnormally high levels in the Andante mutant. Furthermore, the nuclear translocation of Per and Tim is delayed in Andante, and this defect accounts for the long-period phenotype of the mutant. These results suggest a function for CK2-dependent phosphorylation in the molecular oscillator.


Assuntos
Relógios Biológicos/fisiologia , Ritmo Circadiano/fisiologia , Proteínas de Drosophila , Drosophila melanogaster/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Caseína Quinase II , Dimerização , Proteínas de Insetos/metabolismo , Atividade Motora/fisiologia , Mutação , Neurônios/citologia , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , Fenótipo , Ligação Proteica/fisiologia , Proteínas Serina-Treonina Quinases/genética , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia
16.
Genetics ; 208(3): 1195-1207, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29487148

RESUMO

We describe a genome-wide microRNA (miRNA)-based screen to identify brain glial cell functions required for circadian behavior. To identify glial miRNAs that regulate circadian rhythmicity, we employed a collection of "miR-sponges" to inhibit miRNA function in a glia-specific manner. Our initial screen identified 20 glial miRNAs that regulate circadian behavior. We studied two miRNAs, miR-263b and miR-274, in detail and found that both function in adult astrocytes to regulate behavior. Astrocyte-specific inhibition of miR-263b or miR-274 in adults acutely impairs circadian locomotor activity rhythms with no effect on glial or clock neuronal cell viability. To identify potential RNA targets of miR-263b and miR-274, we screened 35 predicted miRNA targets, employing RNA interference-based approaches. Glial knockdown of two putative miR-274 targets, CG4328 and MESK2, resulted in significantly decreased rhythmicity. Homology of the miR-274 targets to mammalian counterparts suggests mechanisms that might be relevant for the glial regulation of rhythmicity.


Assuntos
Ritmo Circadiano/genética , Drosophila/fisiologia , MicroRNAs/genética , Neuroglia/metabolismo , Animais , Astrócitos , Técnicas de Inativação de Genes , Imuno-Histoquímica , Locomoção , Especificidade de Órgãos/genética
17.
J Neurosci ; 25(32): 7377-84, 2005 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-16093388

RESUMO

Sleep and arousal are known to be regulated by both homeostatic and circadian processes, but the underlying molecular mechanisms are not well understood. It has been reported that the Drosophila rest/activity cycle has features in common with the mammalian sleep/wake cycle, and it is expected that use of the fly genetic model will facilitate a molecular understanding of sleep and arousal. Here, we report the phenotypic characterization of a Drosophila rest/activity mutant known as fumin (fmn). We show that fmn mutants have abnormally high levels of activity and reduced rest (sleep); genetic mapping, molecular analyses, and phenotypic rescue experiments demonstrate that these phenotypes result from mutation of the Drosophila dopamine transporter gene. Consistent with the rest phenotype, fmn mutants show enhanced sensitivity to mechanical stimuli and a prolonged arousal once active, indicating a decreased arousal threshold. Strikingly,fmn mutants do not show significant rebound in response to rest deprivation as is typical for wild-type flies, nor do they show decreased life span. These results provide direct evidence that dopaminergic signaling has a critical function in the regulation of insect arousal.


Assuntos
Nível de Alerta/fisiologia , Dopamina/fisiologia , Drosophila/fisiologia , Alelos , Animais , Limiar Diferencial , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Feminino , Fertilidade , Longevidade , Masculino , Atividade Motora , Mutação , Transdução de Sinais/fisiologia , Privação do Sono/fisiopatologia
18.
Front Mol Neurosci ; 9: 146, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066175

RESUMO

Although, glial cells have well characterized functions in the developing and mature brain, it is only in the past decade that roles for these cells in behavior and plasticity have been delineated. Glial astrocytes and glia-neuron signaling, for example, are now known to have important modulatory functions in sleep, circadian behavior, memory and plasticity. To better understand mechanisms of glia-neuron signaling in the context of behavior, we have conducted cell-specific, genome-wide expression profiling of adult Drosophila astrocyte-like brain cells and performed RNA interference (RNAi)-based genetic screens to identify glial factors that regulate behavior. Importantly, our studies demonstrate that adult fly astrocyte-like cells and mouse astrocytes have similar molecular signatures; in contrast, fly astrocytes and surface glia-different classes of glial cells-have distinct expression profiles. Glial-specific expression of 653 RNAi constructs targeting 318 genes identified multiple factors associated with altered locomotor activity, circadian rhythmicity and/or responses to mechanical stress (bang sensitivity). Of interest, 1 of the relevant genes encodes a vesicle recycling factor, 4 encode secreted proteins and 3 encode membrane transporters. These results strongly support the idea that glia-neuron communication is vital for adult behavior.

19.
Front Cell Neurosci ; 9: 256, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26190976

RESUMO

We previously showed that endocytosis and/or vesicle recycling mechanisms are essential in adult Drosophila glial cells for the neuronal control of circadian locomotor activity. In this study, our goal was to identify specific glial vesicle trafficking, recycling, or release factors that are required for rhythmic behavior. From a glia-specific, RNAi-based genetic screen, we identified eight glial factors that are required for normally robust circadian rhythms in either a light-dark cycle or in constant dark conditions. In particular, we show that conditional knockdown of the ROP vesicle release factor in adult glial cells results in arrhythmic behavior. Immunostaining for ROP reveals reduced protein in glial cell processes and an accumulation of the Par Domain Protein 1ε (PDP1ε) clock output protein in the small lateral clock neurons. These results suggest that glia modulate rhythmic circadian behavior by secretion of factors that act on clock neurons to regulate a clock output factor.

20.
G3 (Bethesda) ; 5(4): 551-8, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25653313

RESUMO

The analysis of adult astrocyte glial cells has revealed a remarkable heterogeneity with regard to morphology, molecular signature, and physiology. A key question in glial biology is how such heterogeneity arises during brain development. One approach to this question is to identify genes with differential astrocyte expression during development; certain genes expressed later in neural development may contribute to astrocyte differentiation. We have utilized the Drosophila model and Translating Ribosome Affinity Purification (TRAP)-RNA-seq methods to derive the genome-wide expression profile of Drosophila larval astrocyte-like cells (hereafter referred to as astrocytes) for the first time. These studies identified hundreds of larval astrocyte-enriched genes that encode proteins important for metabolism, energy production, and protein synthesis, consistent with the known role of astrocytes in the metabolic support of neurons. Comparison of the larval profile with that observed for adults has identified genes with astrocyte-enriched expression specific to adulthood. These include genes important for metabolism and energy production, translation, chromatin modification, protein glycosylation, neuropeptide signaling, immune responses, vesicle-mediated trafficking or secretion, and the regulation of behavior. Among these functional classes, the expression of genes important for chromatin modification and vesicle-mediated trafficking or secretion is overrepresented in adult astrocytes based on Gene Ontology analysis. Certain genes with selective adult enrichment may mediate functions specific to this stage or may be important for the differentiation or maintenance of adult astrocytes, with the latter perhaps contributing to population heterogeneity.


Assuntos
Astrócitos/metabolismo , Drosophila/genética , Transcriptoma , Animais , Drosophila/crescimento & desenvolvimento , Genes Reporter , Genoma , Imuno-Histoquímica , Larva/genética , Estágios do Ciclo de Vida/genética , Microscopia de Fluorescência , Sistema Nervoso/metabolismo , Sistema Nervoso/patologia , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa