Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 139: 35-54, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35963663

RESUMO

The early stages of Alzheimer's disease (AD) have been linked to microcircuit dysfunction and pathophysiological neuronal firing in several brain regions. Inhibitory GABAergic microcircuitry is a critical feature of stable neural-circuit function in the healthy brain, and its dysregulation has therefore been proposed as contributing to AD-related pathophysiology. However, exactly how the critical balance between excitatory and inhibitory microcircuitry is modified by AD pathogenesis remains unclear. Here, we set the current evidence implicating dysfunctional GABAergic microcircuitry as a driver of early AD pathophysiology in a simple conceptual framework. Our framework is based on a generalised reductionist model of firing-rate control by local feedback inhibition. We use this framework to consider multiple loci that may be vulnerable to disruption by AD pathogenesis. We first start with evidence investigating how AD-related processes may impact the gross number of inhibitory neurons in the network. We then move to discuss how pathology may impact intrinsic cellular properties and firing thresholds of GABAergic neurons. Finally, we cover how AD-related pathogenesis may disrupt synaptic connectivity between excitatory and inhibitory neurons. We use the feedback inhibition framework to discuss and organise the available evidence from both preclinical rodent work and human studies in AD patients and conclude by identifying key questions and understudied areas for future investigation.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Neurônios GABAérgicos , Encéfalo
2.
J Neurochem ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372586

RESUMO

Lipids play crucial roles in the susceptibility and brain cellular responses to Alzheimer's disease (AD) and are increasingly considered potential soluble biomarkers in cerebrospinal fluid (CSF) and plasma. To delineate the pathological correlations of distinct lipid species, we conducted a comprehensive characterization of both spatially localized and global differences in brain lipid composition in AppNL-G-F mice with spatial and bulk mass spectrometry lipidomic profiling, using human amyloid-expressing (h-Aß) and WT mouse brains controls. We observed age-dependent increases in lysophospholipids, bis(monoacylglycerol) phosphates, and phosphatidylglycerols around Aß plaques in AppNL-G-F mice. Immunohistology-based co-localization identified associations between focal pro-inflammatory lipids, glial activation, and autophagic flux disruption. Likewise, in human donors with varying Braak stages, similar studies of cortical sections revealed co-expression of lysophospholipids and ceramides around Aß plaques in AD (Braak stage V/VI) but not in earlier Braak stage controls. Our findings in mice provide evidence of temporally and spatially heterogeneous differences in lipid composition as local and global Aß-related pathologies evolve. Observing similar lipidomic changes associated with pathological Aß plaques in human AD tissue provides a foundation for understanding differences in CSF lipids with reported clinical stage or disease severity.

3.
Acta Neuropathol ; 147(1): 78, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695952

RESUMO

Aging is associated with cell senescence and is the major risk factor for AD. We characterized premature cell senescence in postmortem brains from non-diseased controls (NDC) and donors with Alzheimer's disease (AD) using imaging mass cytometry (IMC) and single nuclear RNA (snRNA) sequencing (> 200,000 nuclei). We found increases in numbers of glia immunostaining for galactosidase beta (> fourfold) and p16INK4A (up to twofold) with AD relative to NDC. Increased glial expression of genes related to senescence was associated with greater ß-amyloid load. Prematurely senescent microglia downregulated phagocytic pathways suggesting reduced capacity for ß-amyloid clearance. Gene set enrichment and pseudo-time trajectories described extensive DNA double-strand breaks (DSBs), mitochondrial dysfunction and ER stress associated with increased ß-amyloid leading to premature senescence in microglia. We replicated these observations with independent AD snRNA-seq datasets. Our results describe a burden of senescent glia with AD that is sufficiently high to contribute to disease progression. These findings support the hypothesis that microglia are a primary target for senolytic treatments in AD.


Assuntos
Doença de Alzheimer , Senescência Celular , Transcriptoma , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Humanos , Senescência Celular/fisiologia , Senescência Celular/genética , Idoso , Masculino , Idoso de 80 Anos ou mais , Feminino , Microglia/patologia , Microglia/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Neuroglia/patologia , Neuroglia/metabolismo
4.
Nat Commun ; 15(1): 2243, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472200

RESUMO

Brain perfusion and blood-brain barrier (BBB) integrity are reduced early in Alzheimer's disease (AD). We performed single nucleus RNA sequencing of vascular cells isolated from AD and non-diseased control brains to characterise pathological transcriptional signatures responsible for this. We show that endothelial cells (EC) are enriched for expression of genes associated with susceptibility to AD. Increased ß-amyloid is associated with BBB impairment and a dysfunctional angiogenic response related to a failure of increased pro-angiogenic HIF1A to increased VEGFA signalling to EC. This is associated with vascular inflammatory activation, EC senescence and apoptosis. Our genomic dissection of vascular cell risk gene enrichment provides evidence for a role of EC pathology in AD and suggests that reducing vascular inflammatory activation and restoring effective angiogenesis could reduce vascular dysfunction contributing to the genesis or progression of early AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Angiogênese , Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Perfilação da Expressão Gênica
5.
Mol Imaging Biol ; 11(1): 31-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18773246

RESUMO

PURPOSE: The purpose of the study is to track iron-oxide nanoparticle-labelled adult rat bone marrow-derived stem cells (IO-rBMSCs) by magnetic resonance imaging (MRI) and determine their effect in host cardiac tissue using 2-deoxy-2-[F-18]fluoro-D: -glucose-positron emission tomography (FDG-PET). PROCEDURES: Infarcted rats were randomised to receive (1) live IO-rBMSCs by direct local injection, or (2) dead IO-rBMSCs as controls; (3) sham-operated rats received live IO-rBMSCs. The rats were then imaged from 2 days to 6 weeks post-cell implantation using both MRI at 9.4T and FDG-PET. RESULTS: Implanted IO-rBMSCs were visible in the heart by MRI for the duration of the study. Histological analysis confirmed that the implanted IO-rBMSCs were present for up to 6 weeks post-implantation. At 1 week post-IO-rBMSC transplantation, PET studies demonstrated an increase in FDG uptake in infarcted regions implanted with live IO-rBMSC compared to controls. CONCLUSIONS: Noninvasive multimodality imaging allowed us to visualise IO-rBMSCs and establish their affect on cardiac function in a rat model of myocardial infarction (MI).


Assuntos
Imageamento por Ressonância Magnética/métodos , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/diagnóstico , Tomografia por Emissão de Pósitrons/métodos , Transplante de Células-Tronco/métodos , Animais , Células da Medula Óssea/citologia , Células Cultivadas , Compostos Férricos/química , Fluoresceína-5-Isotiocianato/metabolismo , Corantes Fluorescentes/metabolismo , Fluordesoxiglucose F18 , Masculino , Nanopartículas , Tamanho da Partícula , Compostos Radiofarmacêuticos , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
6.
Sci Rep ; 9(1): 14837, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619689

RESUMO

Alzheimer's disease (AD)-associated synaptic dysfunction drives the progression of pathology from its earliest stages. Amyloid ß (Aß) species, both soluble and in plaque deposits, have been causally related to the progressive, structural and functional impairments observed in AD. It is, however, still unclear how Aß plaques develop over time and how they progressively affect local synapse density and turnover. Here we observed, in a mouse model of AD, that Aß plaques grow faster in the earlier stages of the disease and if their initial area is >500 µm2; this may be due to deposition occurring in the outer regions of the plaque, the plaque cloud. In addition, synaptic turnover is higher in the presence of amyloid pathology and this is paralleled by a reduction in pre- but not post-synaptic densities. Plaque proximity does not appear to have an impact on synaptic dynamics. These observations indicate an imbalance in the response of the pre- and post-synaptic terminals and that therapeutics, alongside targeting the underlying pathology, need to address changes in synapse dynamics.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Placa Amiloide/patologia , Densidade Pós-Sináptica/patologia , Terminações Pré-Sinápticas/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Mutação
7.
Cell Rep ; 18(13): 3063-3068, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28355559

RESUMO

Synapse loss is a key feature of dementia, but it is unclear whether synaptic dysfunction precedes degenerative phases of the disease. Here, we show that even before any decrease in synapse density, there is abnormal turnover of cortical axonal boutons and dendritic spines in a mouse model of tauopathy-associated dementia. Strikingly, tauopathy drives a mismatch in synapse turnover; postsynaptic spines turn over more rapidly, whereas presynaptic boutons are stabilized. This imbalance between pre- and post-synaptic stability coincides with reduced synaptically driven neuronal activity in pre-degenerative stages of the disease.


Assuntos
Sinapses/patologia , Tauopatias/patologia , Animais , Axônios/metabolismo , Córtex Cerebral/patologia , Espinhas Dendríticas/metabolismo , Masculino , Camundongos Transgênicos , Terminações Pré-Sinápticas/metabolismo
8.
Exp Neurol ; 229(2): 484-93, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21459089

RESUMO

We have previously shown that following severe brain insults, chronic inflammation induced by lipopolysaccharide (LPS) injection, and status epilepticus, new dentate granule cells exhibit changes of excitatory and inhibitory synaptic drive indicating that they may mitigate the abnormal brain function. Major inflammatory changes in the environment encountering the new neurons were a common feature of these insults. Here, we have asked how the morphology and electrophysiology of new neurons are affected by a comparably mild pathology: repetitive seizures causing hyperexcitability but not inflammation. Rats were subjected to rapid kindling, i.e., 40 rapidly recurring, electrically-induced seizures, and subsequently exposed to stimulus-evoked seizures twice weekly. New granule cells were labeled 1 week after the initial insult with a retroviral vector encoding green fluorescent protein. After 6-8 weeks, new neurons were analyzed using confocal microscopy and whole-cell patch-clamp recordings. The new neurons exposed to the pathological environment exhibited only subtle changes in their location, orientation, dendritic arborizations, and spine morphology. In contrast to the more severe insults, the new neurons exposed to rapid kindling and stimulus-evoked seizures exhibited enhanced afferent excitatory synaptic drive which could suggest that the cells that had developed in this environment contributed to hyperexcitability. However, the new neurons showed concomitant reduction of intrinsic excitability which may counteract the propagation of this excitability to the target cells. This study provides further evidence that following insults to the adult brain, the pattern of synaptic alterations at afferent inputs to newly generated neurons is dependent on the characteristics of the pathological environment.


Assuntos
Hipocampo/fisiopatologia , Excitação Neurológica/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Convulsões/fisiopatologia , Animais , Forma Celular/fisiologia , Eletrofisiologia , Ensaio de Imunoadsorção Enzimática , Hipocampo/patologia , Imuno-Histoquímica , Excitação Neurológica/patologia , Masculino , Microscopia Confocal , Neurônios/patologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Convulsões/patologia
9.
Stem Cell Res Ther ; 1(2): 17, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20550687

RESUMO

INTRODUCTION: This study aimed to determine the homing potential and fate of epidermal neural crest stem cells (eNCSCs) derived from hair follicles, and bone marrow-derived stem cells (BMSCs) of mesenchymal origin, in a lipopolysaccharide (LPS)-induced inflammatory lesion model in the rat brain. Both eNCSCs and BMSCs are easily accessible from adult tissues by using minimally invasive procedures and can differentiate into a variety of neuroglial lineages. Thus, these cells have the potential to be used in autologous cell-replacement therapies, minimizing immune rejection, and engineered to secrete a variety of molecules. METHODS: Both eNCSCs and BMSCs were prelabeled with iron-oxide nanoparticles (IO-TAT-FITC) and implanted either onto the corpus callosum in healthy or LPS-lesioned animals or intravenously into lesioned animals. Both cell types were tracked longitudinally in vivo by using magnetic resonance imaging (MRI) for up to 30 days and confirmed by postmortem immunohistochemistry. RESULTS: Transplanted cells in nonlesioned animals remained localized along the corpus callosum. Cells implanted distally from an LPS lesion (either intracerebrally or intravenously) migrated only toward the lesion, as seen by the localized MRI signal void. Fluorescence microscopy of the FITC tag on the nanoparticles confirmed the in vivo MRI data, CONCLUSIONS: This study demonstrated that both cell types can be tracked in vivo by using noninvasive MRI and have pathotropic properties toward an inflammatory lesion in the brain. As these cells differentiate into the glial phenotype and are derived from adult tissues, they offer a viable alternative autologous stem cell source and gene-targeting potential for neurodegenerative and demyelinating pathologies.


Assuntos
Lesões Encefálicas/terapia , Corpo Caloso/metabolismo , Neuroglia/metabolismo , Transplante de Células-Tronco , Células-Tronco/metabolismo , Administração Intravenosa , Animais , Células da Medula Óssea , Encéfalo/citologia , Encéfalo/patologia , Lesões Encefálicas/induzido quimicamente , Diferenciação Celular , Movimento Celular , Terapia Baseada em Transplante de Células e Tecidos , Doenças Desmielinizantes/terapia , Compostos Férricos , Folículo Piloso/citologia , Lipopolissacarídeos , Imageamento por Ressonância Magnética , Nanopartículas Metálicas , Microscopia de Fluorescência , Crista Neural/citologia , Doenças Neurodegenerativas/terapia , Neuroglia/citologia , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição SOXE/metabolismo , Transplante Autólogo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa