Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 173(1): 907-917, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27872245

RESUMO

Gibberellic acid (GA)-mediated cell expansion initiates the seed-to-seedling transition in plants and is repressed by DELLA proteins. Using digital single-cell analysis, we identified a cellular subdomain within the midhypocotyl, whose expansion drives the final step of this developmental transition under optimal conditions. Using network inference, the transcription factor ATHB5 was identified as a genetic factor whose localized expression promotes GA-mediated expansion specifically within these cells. Both this protein and its putative growth-promoting target EXPANSIN3 are repressed by DELLA, and coregulated at single-cell resolution during seed germination. The cellular domains of hormone sensitivity were explored within the Arabidopsis (Arabidopsis thaliana) embryo by putting seeds under GA-limiting conditions and quantifying cellular growth responses. The middle and upper hypocotyl have a greater requirement for GA to promote cell expansion than the lower embryo axis. Under these conditions, germination was still completed following enhanced growth within the radicle and lower axis. Under GA-limiting conditions, the athb5 mutant did not show a phenotype at the level of seed germination, but it did at a cellular level with reduced cell expansion in the hypocotyl relative to the wild type. These data reveal that the spatiotemporal cell expansion events driving this transition are not determinate, and the conditional use of GA-ATHB5-mediated hypocotyl growth under optimal conditions may be used to optionally support rapid seedling growth. This study demonstrates that multiple genetic and spatiotemporal cell expansion mechanisms underlie the seed to seedling transition in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Giberelinas/metabolismo , Proteínas de Homeodomínio/metabolismo , Hipocótilo/citologia , Fatores de Transcrição/metabolismo , Anisotropia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Germinação/genética , Proteínas de Homeodomínio/genética , Hipocótilo/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Plântula/crescimento & desenvolvimento , Sementes/citologia , Sementes/fisiologia , Análise de Célula Única/métodos , Fatores de Transcrição/genética
2.
Curr Biol ; 33(22): 4798-4806.e3, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37827150

RESUMO

Organ function emerges from the interactions between their constituent cells. The investigation of cellular organization can provide insight into organ function following structure-function relationships. Here, we investigate the extent to which properties in cellular organization can arise "for free" as an emergent property of embedding cells in space versus those that are actively generated by patterning processes. Default cellular configurations were established using three-dimensional (3D) digital tissue models. Network-based analysis of these synthetic cellular assemblies established a quantitative topological baseline of cellular organization, granted by virtue of passive spatial packing and the minimal amount of order that emerges for free in tessellated tissues. A 3D cellular-resolution digital tissue atlas for the model plant species Arabidopsis was generated, and the extent to which the organs in this organism conform to the default configurations was established through statistical comparisons with digital tissue models. Cells in different tissues of Arabidopsis do not conform to random packing arrangements to varying degrees. Most closely matching the random models was the undifferentiated shoot apical meristem (SAM) from which aerial organs emanate. By contrast, leaf and sepal tissue showed the greatest deviation from this baseline, suggesting these to be the most "complex" tissues in Arabidopsis. Investigation of the patterning principles responsible for the gap between these tissues and default patterns revealed cell elongation and the introduction of air spaces to contribute toward additional organ patterning complexity. This work establishes a quantitative morphospace to understand the principles of organ construction and its diversity within a single organism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Meristema/metabolismo , Proteínas de Arabidopsis/metabolismo , Morfogênese , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Plant Methods ; 15: 33, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30988692

RESUMO

Modern imaging approaches enable the acquisition of 3D and 4D datasets capturing plant organ development at cellular resolution. Computational analyses of these data enable the digitization and analysis of individual cells. In order to fully harness the information encoded within these datasets, annotation of the cell types within organs may be performed. This enables data points to be placed within the context of their position and identity, and for equivalent cell types to be compared between samples. The shoot apical meristem (SAM) in plants is the apical stem cell niche from which all above ground organs are derived. We developed 3DCellAtlas Meristem which enables the complete cellular annotation of all cells within the SAM with up to 96% accuracy across all cell types in Arabidopsis and 99% accuracy in tomato SAMs. Successive layers of cells are identified along with the central stem cells, boundary regions, and layers within developing primordia. Geometric analyses provide insight into the morphogenetic process that occurs during these developmental processes. Coupling these digital analyses with reporter expression will enable multidimensional analyses to be performed at single cell resolution. This provides a rapid and robust means to perform comprehensive cellular annotation of plant SAMs and digital single cell analyses, including cell geometry and gene expression. This fills a key gap in our ability to analyse and understand complex multicellular biology in the apical plant stem cell niche and paves the way for digital cellular atlases and analyses.

4.
Cell Syst ; 8(1): 53-65.e3, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30660611

RESUMO

The control of cell position and division act in concert to dictate multicellular organization in tissues and organs. How these processes shape global order and molecular movement across organs is an outstanding problem in biology. Using live 3D imaging and computational analyses, we extracted networks capturing cellular connectivity dynamics across the Arabidopsis shoot apical meristem (SAM) and topologically analyzed the local and global properties of cellular architecture. Locally generated cell division rules lead to the emergence of global tissue-scale organization of the SAM, facilitating robust global communication. Cells that lie upon more shorter paths have an increased propensity to divide, with division plane placement acting to limit the number of shortest paths their daughter cells lie upon. Cell shape heterogeneity and global cellular organization requires KATANIN, providing a multiscale link between cell geometry, mechanical cell-cell interactions, and global tissue order.


Assuntos
Arabidopsis/química , Meristema/química , Brotos de Planta/química , Divisão Celular
5.
J R Soc Interface ; 14(135)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29021161

RESUMO

Multicellularity and cellular cooperation confer novel functions on organs following a structure-function relationship. How regulated cell migration, division and differentiation events generate cellular arrangements has been investigated, providing insight into the regulation of genetically encoded patterning processes. Much less is known about the higher-order properties of cellular organization within organs, and how their functional coordination through global spatial relations shape and constrain organ function. Key questions to be addressed include: why are cells organized in the way they are? What is the significance of the patterns of cellular organization selected for by evolution? What other configurations are possible? These may be addressed through a combination of global cellular interaction mapping and network science to uncover the relationship between organ structure and function. Using this approach, global cellular organization can be discretized and analysed, providing a quantitative framework to explore developmental processes. Each of the local and global properties of integrated multicellular systems can be analysed and compared across different tissues and models in discrete terms. Advances in high-resolution microscopy and image analysis continue to make cellular interaction mapping possible in an increasing variety of biological systems and tissues, broadening the further potential application of this approach. Understanding the higher-order properties of complex cellular assemblies provides the opportunity to explore the evolution and constraints of cell organization, establishing structure-function relationships that can guide future organ design.


Assuntos
Modelos Biológicos , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa