Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Immunity ; 47(5): 848-861.e5, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29126798

RESUMO

CD4+ T cells optimize the cytotoxic T cell (CTL) response in magnitude and quality, by unknown molecular mechanisms. We here present the transcriptomic changes in CTLs resulting from CD4+ T cell help after anti-cancer vaccination or virus infection. The gene expression signatures revealed that CD4+ T cell help during priming optimized CTLs in expression of cytotoxic effector molecules and many other functions that ensured efficacy of CTLs throughout their life cycle. Key features included downregulation of PD-1 and other coinhibitory receptors that impede CTL activity, and increased motility and migration capacities. "Helped" CTLs acquired chemokine receptors that helped them reach their tumor target tissue and metalloprotease activity that enabled them to invade into tumor tissue. A very large part of the "help" program was instilled in CD8+ T cells via CD27 costimulation. The help program thus enhances specific CTL effector functions in response to vaccination or a virus infection.


Assuntos
Ligante CD27/fisiologia , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T Citotóxicos/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/fisiologia , Animais , Receptor 1 de Quimiocina CX3C/fisiologia , Diferenciação Celular , Movimento Celular , Regulação para Baixo , Camundongos , Camundongos Endogâmicos C57BL , Receptores CXCR4/fisiologia
2.
Proc Natl Acad Sci U S A ; 120(4): e2216055120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669105

RESUMO

DNA damage threatens genomic integrity and instigates stem cell failure. To bypass genotoxic lesions during replication, cells employ DNA damage tolerance (DDT), which is regulated via PCNA ubiquitination and REV1. DDT is conserved in all domains of life, yet its relevance in mammals remains unclear. Here, we show that inactivation of both PCNA-ubiquitination and REV1 results in embryonic and adult lethality, and the accumulation of DNA damage in hematopoietic stem and progenitor cells (HSPCs) that ultimately resulted in their depletion. Our results reveal the crucial relevance of DDT in the maintenance of stem cell compartments and mammalian life in unperturbed conditions.


Assuntos
Dano ao DNA , Animais , Reparo do DNA , Replicação do DNA , Células-Tronco Hematopoéticas/metabolismo , Mamíferos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitinação
3.
Mol Cell ; 67(5): 882-890.e5, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28886337

RESUMO

DNA damage tolerance during eukaryotic replication is orchestrated by PCNA ubiquitination. While monoubiquitination activates mutagenic translesion synthesis, polyubiquitination activates an error-free pathway, elusive in mammals, enabling damage bypass by template switching. Fork reversal is driven in vitro by multiple enzymes, including the DNA translocase ZRANB3, shown to bind polyubiquitinated PCNA. However, whether this interaction promotes fork remodeling and template switching in vivo was unknown. Here we show that damage-induced fork reversal in mammalian cells requires PCNA ubiquitination, UBC13, and K63-linked polyubiquitin chains, previously involved in error-free damage tolerance. Fork reversal in vivo also requires ZRANB3 translocase activity and its interaction with polyubiquitinated PCNA, pinpointing ZRANB3 as a key effector of error-free DNA damage tolerance. Mutations affecting fork reversal also induced unrestrained fork progression and chromosomal breakage, suggesting fork remodeling as a global fork slowing and protection mechanism. Targeting these fork protection systems represents a promising strategy to potentiate cancer chemotherapy.


Assuntos
Dano ao DNA , DNA Helicases/metabolismo , Replicação do DNA , DNA de Neoplasias/biossíntese , Neoplasias/enzimologia , Poliubiquitina/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Origem de Replicação , Animais , Sistemas CRISPR-Cas , DNA Helicases/genética , DNA de Neoplasias/genética , DNA de Neoplasias/ultraestrutura , Células HCT116 , Células HEK293 , Humanos , Cinética , Camundongos , Mutação , Neoplasias/genética , Neoplasias/ultraestrutura , Antígeno Nuclear de Célula em Proliferação/genética , Interferência de RNA , Transfecção , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
4.
Nucleic Acids Res ; 50(13): 7420-7435, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35819193

RESUMO

Crosslink repair depends on the Fanconi anemia pathway and translesion synthesis polymerases that replicate over unhooked crosslinks. Translesion synthesis is regulated via ubiquitination of PCNA, and independently via translesion synthesis polymerase REV1. The division of labor between PCNA-ubiquitination and REV1 in interstrand crosslink repair is unclear. Inhibition of either of these pathways has been proposed as a strategy to increase cytotoxicity of platinating agents in cancer treatment. Here, we defined the importance of PCNA-ubiquitination and REV1 for DNA in mammalian ICL repair. In mice, loss of PCNA-ubiquitination, but not REV1, resulted in germ cell defects and hypersensitivity to cisplatin. Loss of PCNA-ubiquitination, but not REV1 sensitized mammalian cancer cell lines to cisplatin. We identify polymerase Kappa as essential in tolerating DNA damage-induced lesions, in particular cisplatin lesions. Polk-deficient tumors were controlled by cisplatin treatment and it significantly delayed tumor outgrowth and increased overall survival of tumor bearing mice. Our results indicate that PCNA-ubiquitination and REV1 play distinct roles in DNA damage tolerance. Moreover, our results highlight POLK as a critical TLS polymerase in tolerating multiple genotoxic lesions, including cisplatin lesions. The relative frequent loss of Polk in cancers indicates an exploitable vulnerability for precision cancer medicine.


Assuntos
Reparo do DNA , Neoplasias , Animais , Cisplatino/uso terapêutico , Dano ao DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Medicina de Precisão , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitinação
5.
EMBO J ; 38(14): e101564, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31304633

RESUMO

DOT1L methylates histone H3K79 and is aberrantly regulated in MLL-rearranged leukemia. Inhibitors have been developed to target DOT1L activity in leukemia, but cellular mechanisms that regulate DOT1L are still poorly understood. We have identified the histone deacetylase Rpd3 as a negative regulator of budding yeast Dot1. At its target genes, the transcriptional repressor Rpd3 restricts H3K79 methylation, explaining the absence of H3K79me3 at a subset of genes in the yeast genome. Similar to the crosstalk in yeast, inactivation of the murine Rpd3 homolog HDAC1 in thymocytes led to an increase in H3K79 methylation. Thymic lymphomas that arise upon genetic deletion of Hdac1 retained the increased H3K79 methylation and were sensitive to reduced DOT1L dosage. Furthermore, cell lines derived from Hdac1Δ/Δ thymic lymphomas were sensitive to a DOT1L inhibitor, which induced apoptosis. In summary, we identified an evolutionarily conserved crosstalk between HDAC1 and DOT1L with impact in murine thymic lymphoma development.


Assuntos
Histona Desacetilase 1/genética , Histona Desacetilase 2/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Linfoma/metabolismo , Neoplasias do Timo/metabolismo , Acetilação , Animais , Linhagem Celular Tumoral , Deleção de Genes , Histona Desacetilases/genética , Humanos , Linfoma/genética , Metilação , Camundongos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Neoplasias do Timo/genética
6.
EMBO Rep ; 22(2): e51184, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33410591

RESUMO

Differentiation of naïve peripheral B cells into terminally differentiated plasma cells is characterized by epigenetic alterations, yet the epigenetic mechanisms that control B-cell fate remain unclear. Here, we identified a role for the histone H3K79 methyltransferase DOT1L in controlling B-cell differentiation. Mouse B cells lacking Dot1L failed to establish germinal centers (GC) and normal humoral immune responses in vivo. In vitro, activated B cells in which Dot1L was deleted showed aberrant differentiation and prematurely acquired plasma cell characteristics. Similar results were obtained when DOT1L was chemically inhibited in mature B cells in vitro. Mechanistically, combined epigenomics and transcriptomics analysis revealed that DOT1L promotes expression of a pro-proliferative, pro-GC program. In addition, DOT1L indirectly supports the repression of an anti-proliferative plasma cell differentiation program by maintaining the repression of Polycomb Repressor Complex 2 (PRC2) targets. Our findings show that DOT1L is a key modulator of the core transcriptional and epigenetic landscape in B cells, establishing an epigenetic barrier that warrants B-cell naivety and GC B-cell differentiation.


Assuntos
Linfócitos B/citologia , Diferenciação Celular , Histona-Lisina N-Metiltransferase , Histonas , Metiltransferases , Animais , Epigênese Genética , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Histonas/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos
7.
Proc Natl Acad Sci U S A ; 117(34): 20706-20716, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32764145

RESUMO

Cytotoxic T cell differentiation is guided by epigenome adaptations, but how epigenetic mechanisms control lymphocyte development has not been well defined. Here we show that the histone methyltransferase DOT1L, which marks the nucleosome core on active genes, safeguards normal differentiation of CD8+ T cells. T cell-specific ablation of Dot1L resulted in loss of naïve CD8+ T cells and premature differentiation toward a memory-like state, independent of antigen exposure and in a cell-intrinsic manner. Mechanistically, DOT1L controlled CD8+ T cell differentiation by ensuring normal T cell receptor density and signaling. DOT1L also maintained epigenetic identity, in part by indirectly supporting the repression of developmentally regulated genes. Finally, deletion of Dot1L in T cells resulted in an impaired immune response. Through our study, DOT1L is emerging as a central player in physiology of CD8+ T cells, acting as a barrier to prevent premature differentiation and controlling epigenetic integrity.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Diferenciação Celular/genética , Epigênese Genética/genética , Epigenômica , Feminino , Histona Metiltransferases/metabolismo , Histona-Lisina N-Metiltransferase/fisiologia , Histonas/metabolismo , Masculino , Metiltransferases/metabolismo , Camundongos
8.
Proc Natl Acad Sci U S A ; 117(49): 31343-31352, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229554

RESUMO

Development of progenitor B cells (ProB cells) into precursor B cells (PreB cells) is dictated by immunoglobulin heavy chain checkpoint (IgHCC), where the IgHC encoded by a productively rearranged Igh allele assembles into a PreB cell receptor complex (PreBCR) to generate signals to initiate this transition and suppressing antigen receptor gene recombination, ensuring that only one productive Igh allele is expressed, a phenomenon known as Igh allelic exclusion. In contrast to a productively rearranged Igh allele, the Igh messenger RNA (mRNA) (IgHR) from a nonproductively rearranged Igh allele is degraded by nonsense-mediated decay (NMD). This fact prohibited firm conclusions regarding the contribution of stable IgHR to the molecular and developmental changes associated with the IgHCC. This point was addressed by generating the IghTer5H∆TM mouse model from IghTer5H mice having a premature termination codon at position +5 in leader exon of IghTer5H allele. This prohibited NMD, and the lack of a transmembrane region (∆TM) prevented the formation of any signaling-competent PreBCR complexes that may arise as a result of read-through translation across premature Ter5 stop codon. A highly sensitive sandwich Western blot revealed read-through translation of IghTer5H message, indicating that previous conclusions regarding a role of IgHR in establishing allelic exclusion requires further exploration. As determined by RNA sequencing (RNA-Seq), this low amount of IgHC sufficed to initiate PreB cell markers normally associated with PreBCR signaling. In contrast, the IghTer5H∆TM knock-in allele, which generated stable IgHR but no detectable IgHC, failed to induce PreB development. Our data indicate that the IgHCC is controlled at the level of IgHC and not IgHR expression.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/metabolismo , Alelos , Animais , Biomarcadores/metabolismo , Loci Gênicos , Camundongos Endogâmicos C57BL , Células Precursoras de Linfócitos B/citologia , Células Precursoras de Linfócitos B/imunologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes
9.
Int J Mol Sci ; 24(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36614236

RESUMO

Chromothripsis defines a genetic phenomenon where up to hundreds of clustered chromosomal rearrangements can arise in a single catastrophic event. The phenomenon is associated with cancer and congenital diseases. Most current models on the origin of chromothripsis suggest that prior to chromatin reshuffling numerous DNA double-strand breaks (DSBs) have to exist, i.e., chromosomal shattering precedes rearrangements. However, the preference of a DNA end to rearrange in a proximal accessible region led us to propose chromothripsis as the reaction product of successive chromatin rearrangements. We previously coined this process Alternative End Generation (AEG), where a single DSB with a repair-blocking end initiates a domino effect of rearrangements. Accordingly, chromothripsis is the end product of this domino reaction taking place in a single catastrophic event.


Assuntos
Cromotripsia , Humanos , Aberrações Cromossômicas , Quebras de DNA de Cadeia Dupla , Cromatina , DNA/genética
10.
Int J Mol Sci ; 24(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446306

RESUMO

Fanconi anemia (FA) develops due to a mutation in one of the FANC genes that are involved in the repair of interstrand crosslinks (ICLs). FANCG, a member of the FA core complex, is essential for ICL repair. Previous FANCG-deficient mouse models were generated with drug-based selection cassettes in mixed mice backgrounds, leading to a disparity in the interpretation of genotype-related phenotype. We created a Fancg-KO (KO) mouse model using CRISPR/Cas9 to exclude these confounders. The entire Fancg locus was targeted and maintained on the immunological well-characterized C57BL/6J background. The intercrossing of heterozygous mice resulted in sub-Mendelian numbers of homozygous mice, suggesting the loss of FANCG can be embryonically lethal. KO mice displayed infertility and hypogonadism, but no other developmental problems. Bone marrow analysis revealed a defect in various hematopoietic stem and progenitor subsets with a bias towards myelopoiesis. Cell lines derived from Fancg-KO mice were hypersensitive to the crosslinking agents cisplatin and Mitomycin C, and Fancg-KO mouse embryonic fibroblasts (MEFs) displayed increased γ-H2AX upon cisplatin treatment. The reconstitution of these MEFs with Fancg cDNA corrected for the ICL hypersensitivity. This project provides a new, genetically, and immunologically well-defined Fancg-KO mouse model for further in vivo and in vitro studies on FANCG and ICL repair.


Assuntos
Cisplatino , Anemia de Fanconi , Humanos , Animais , Camundongos , Cisplatino/metabolismo , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Camundongos Endogâmicos C57BL , Sistemas CRISPR-Cas , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/metabolismo , Mitomicina , Fenótipo , Proteína do Grupo de Complementação G da Anemia de Fanconi/genética
11.
Immunity ; 38(1): 53-65, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23159439

RESUMO

T helper 17 (Th17) cells protect against infection but also promote inflammation and autoimmunity. Therefore, the factors that govern Th17 cell differentiation are of special interest. The CD27 and CD70 costimulatory pathway impeded Th17 effector cell differentiation and associated autoimmunity in a mouse model of multiple sclerosis. CD27 or CD70 deficiency exacerbated disease, whereas constitutive CD27 signaling strongly reduced disease incidence and severity. CD27 signaling did not impact master regulators of T helper cell lineage commitment but selectively repressed transcription of the key effector molecules interleukin-17 (IL-17) and the chemokine receptor CCR6 in differentiating Th17 cells. CD27 mediated this repression at least in part via the c-Jun N-terminal kinase (JNK) pathway that restrained IL-17 and CCR6 expression in differentiating Th17 cells. CD27 signaling also resulted in epigenetic silencing of the Il17a gene. Thus, CD27 costimulation via JNK signaling, transcriptional, and epigenetic effects suppresses Th17 effector cell function and associated pathological consequences.


Assuntos
Autoimunidade/imunologia , Ligante CD27/metabolismo , Transdução de Sinais , Células Th17/imunologia , Células Th17/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Animais , Autoimunidade/genética , Ligante CD27/genética , Diferenciação Celular/imunologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Epigênese Genética , Regulação da Expressão Gênica , Inativação Gênica , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-17/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Transgênicos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores CCR6/genética , Receptores CCR6/metabolismo , Células Th17/citologia
12.
Cell Mol Life Sci ; 78(19-20): 6395-6408, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34398252

RESUMO

Conventional CD8+ memory T cells develop upon stimulation with foreign antigen and provide increased protection upon re-challenge. Over the past two decades, new subsets of CD8+ T cells have been identified that acquire memory features independently of antigen exposure. These antigen-inexperienced memory T cells (TAIM) are described under several names including innate memory, virtual memory, and memory phenotype. TAIM cells exhibit characteristics of conventional or true memory cells, including antigen-specific responses. In addition, they show responsiveness to innate stimuli and have been suggested to provide additional levels of protection toward infections and cancer. Here, we discuss the current understanding of TAIM cells, focusing on extrinsic and intrinsic molecular conditions that favor their development, their molecular definitions and immunological properties, as well as their transcriptional and epigenetic regulation.


Assuntos
Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Animais , Epigênese Genética/imunologia , Humanos , Imunidade Inata/imunologia
13.
Nucleic Acids Res ; 47(14): 7163-7181, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31251805

RESUMO

The DNA damage response network guards the stability of the genome from a plethora of exogenous and endogenous insults. An essential feature of the DNA damage response network is its capacity to tolerate DNA damage and structural impediments during DNA synthesis. This capacity, referred to as DNA damage tolerance (DDT), contributes to replication fork progression and stability in the presence of blocking structures or DNA lesions. Defective DDT can lead to a prolonged fork arrest and eventually cumulate in a fork collapse that involves the formation of DNA double strand breaks. Four principal modes of DDT have been distinguished: translesion synthesis, fork reversal, template switching and repriming. All DDT modes warrant continuation of replication through bypassing the fork stalling impediment or repriming downstream of the impediment in combination with filling of the single-stranded DNA gaps. In this way, DDT prevents secondary DNA damage and critically contributes to genome stability and cellular fitness. DDT plays a key role in mutagenesis, stem cell maintenance, ageing and the prevention of cancer. This review provides an overview of the role of DDT in these aspects.


Assuntos
Adaptação Fisiológica/genética , Envelhecimento/genética , Dano ao DNA , Mutagênese , Neoplasias/genética , Células-Tronco/metabolismo , Animais , Reparo do DNA , Humanos , Modelos Genéticos , Neoplasias/terapia
14.
Proc Natl Acad Sci U S A ; 114(33): E6875-E6883, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28761001

RESUMO

DNA damage tolerance (DDT) enables bypassing of DNA lesions during replication, thereby preventing fork stalling, replication stress, and secondary DNA damage related to fork stalling. Three modes of DDT have been documented: translesion synthesis (TLS), template switching (TS), and repriming. TLS and TS depend on site-specific PCNA K164 monoubiquitination and polyubiquitination, respectively. To investigate the role of DDT in maintaining hematopoietic stem cells (HSCs) and progenitors, we used PcnaK164R/K164R mice as a unique DDT-defective mouse model. Analysis of the composition of HSCs and HSC-derived multipotent progenitors (MPPs) revealed a significantly reduced number of HSCs, likely owing to increased differentiation of HSCs toward myeloid/erythroid-associated MPP2s. This skewing came at the expense of the number of lymphoid-primed MPP4s, which appeared to be compensated for by increased MPP4 proliferation. Furthermore, defective DDT decreased the numbers of MPP-derived common lymphoid progenitor (CLP), common myeloid progenitor (CMP), megakaryocyte-erythroid progenitor (MEP), and granulocyte-macrophage progenitor (GMP) cells, accompanied by increased cell cycle arrest in CMPs. The HSC and MPP phenotypes are reminiscent of premature aging and stressed hematopoiesis, and indeed progressed with age and were exacerbated on cisplatin exposure. Bone marrow transplantations revealed a strong cell intrinsic defect of DDT-deficient HSCs in reconstituting lethally irradiated mice and a strong competitive disadvantage when cotransplanted with wild-type HSCs. These findings indicate a critical role of DDT in maintaining HSCs and progenitor cells, and in preventing premature aging.


Assuntos
Dano ao DNA , Replicação do DNA/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Multipotentes/metabolismo , Envelhecimento/genética , Animais , Diferenciação Celular/genética , Reparo do DNA , Hematopoese/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígeno Nuclear de Célula em Proliferação/genética
16.
Proc Natl Acad Sci U S A ; 113(26): E3649-56, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27303044

RESUMO

Chromosomal translocations are a hallmark of cancer. Unraveling the molecular mechanism of these rare genetic events requires a clear distinction between correlative and causative risk-determinants, where technical and analytical issues can be excluded. To meet this goal, we performed in-depth analyses of publicly available genome-wide datasets. In contrast to several recent reports, we demonstrate that chromosomal translocation risk is causally unrelated to promoter stalling (Spt5), transcriptional activity, or off-targeting activity of the activation-induced cytidine deaminase. Rather, an open chromatin configuration, which is not promoter-specific, explained the elevated translocation risk of promoter regions. Furthermore, the fact that gene size directly correlates with the translocation risk in mice and human cancers further demonstrated the general irrelevance of promoter-specific activities. Interestingly, a subset of translocations observed in cancer patients likely initiates from double-strand breaks induced by an access-independent process. Together, these unexpected and novel insights are fundamental in understanding the origin of chromosome translocations and, consequently, cancer.


Assuntos
Neoplasias/genética , Translocação Genética , Animais , Cromatina/genética , Genoma , Humanos , Camundongos , Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Transcrição Gênica , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
17.
Nucleic Acids Res ; 44(10): 4734-44, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-26926109

RESUMO

PrimPol is a DNA damage tolerant polymerase displaying both translesion synthesis (TLS) and (re)-priming properties. This led us to study the consequences of a PrimPol deficiency in tolerating mutagenic lesions induced by members of the APOBEC/AID family of cytosine deaminases. Interestingly, during somatic hypermutation, PrimPol counteracts the generation of C>G transversions on the leading strand. Independently, mutation analyses in human invasive breast cancer confirmed a pro-mutagenic activity of APOBEC3B and revealed a genome-wide anti-mutagenic activity of PRIMPOL as well as most Y-family TLS polymerases. PRIMPOL especially prevents APOBEC3B targeted cytosine mutations within TpC dinucleotides. As C transversions induced by APOBEC/AID family members depend on the formation of AP-sites, we propose that PrimPol reprimes preferentially downstream of AP-sites on the leading strand, to prohibit error-prone TLS and simultaneously stimulate error-free homology directed repair. These in vivo studies are the first demonstrating a critical anti-mutagenic activity of PrimPol in genome maintenance.


Assuntos
Citidina Desaminase/metabolismo , DNA Primase/fisiologia , DNA Polimerase Dirigida por DNA/fisiologia , Antígenos de Histocompatibilidade Menor/metabolismo , Enzimas Multifuncionais/fisiologia , Mutagênese , Animais , Linfócitos B/enzimologia , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Sistemas CRISPR-Cas , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Citidina Desaminase/antagonistas & inibidores , DNA/metabolismo , Replicação do DNA , Feminino , Humanos , Switching de Imunoglobulina , Camundongos Endogâmicos C57BL , Hipermutação Somática de Imunoglobulina , Linfócitos T/enzimologia , Raios Ultravioleta
18.
Nucleic Acids Res ; 43(1): 282-94, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25505145

RESUMO

Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (Pcna(K164R)) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage.


Assuntos
Dano ao DNA , DNA Polimerase Dirigida por DNA/fisiologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitinação , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sobrevivência Celular , Células Cultivadas , Quinase 1 do Ponto de Checagem , Replicação do DNA , DNA Polimerase Dirigida por DNA/genética , Metanossulfonato de Metila/toxicidade , Camundongos Knockout , Mutação , Antígeno Nuclear de Célula em Proliferação/genética , Proteínas Quinases/metabolismo , Fase S
19.
Nucleic Acids Res ; 42(17): 11071-82, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25170086

RESUMO

Short-wave ultraviolet light induces both mildly helix-distorting cyclobutane pyrimidine dimers (CPDs) and severely distorting (6-4) pyrimidine pyrimidone photoproducts ((6-4)PPs). The only DNA polymerase (Pol) that is known to replicate efficiently across CPDs is Polη, a member of the Y family of translesion synthesis (TLS) DNA polymerases. Phenotypes of Polη deficiency are transient, suggesting redundancy with other DNA damage tolerance pathways. Here we performed a comprehensive analysis of the temporal requirements of Y-family Pols ι and κ as backups for Polη in (i) bypassing genomic CPD and (6-4)PP lesions in vivo, (ii) suppressing DNA damage signaling, (iii) maintaining cell cycle progression and (iv) promoting cell survival, by using mouse embryonic fibroblast lines with single and combined disruptions in these Pols. The contribution of Polι is restricted to TLS at a subset of the photolesions. Polκ plays a dominant role in rescuing stalled replication forks in Polη-deficient mouse embryonic fibroblasts, both at CPDs and (6-4)PPs. This dampens DNA damage signaling and cell cycle arrest, and results in increased survival. The role of relatively error-prone Pols ι and κ as backups for Polη contributes to the understanding of the mutator phenotype of xeroderma pigmentosum variant, a syndrome caused by Polη defects.


Assuntos
Dano ao DNA , DNA Polimerase Dirigida por DNA/fisiologia , Raios Ultravioleta/efeitos adversos , Animais , Ciclo Celular , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Genoma , Camundongos , Dímeros de Pirimidina/metabolismo , DNA Polimerase iota
20.
Blood ; 121(11): 2038-50, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23327920

RESUMO

Histone deacetylases (HDACs) are epigenetic erasers of lysine-acetyl marks. Inhibition of HDACs using small molecule inhibitors (HDACi) is a potential strategy in the treatment of various diseases and is approved for treating hematological malignancies. Harnessing the therapeutic potential of HDACi requires knowledge of HDAC-function in vivo. Here, we generated a thymocyte-specific gradient of HDAC-activity using compound conditional knockout mice for Hdac1 and Hdac2. Unexpectedly, gradual loss of HDAC-activity engendered a dosage-dependent accumulation of immature thymocytes and correlated with the incidence and latency of monoclonal lymphoblastic thymic lymphomas. Strikingly, complete ablation of Hdac1 and Hdac2 abrogated lymphomagenesis due to a block in early thymic development. Genomic, biochemical and functional analyses of pre-leukemic thymocytes and tumors revealed a critical role for Hdac1/Hdac2-governed HDAC-activity in regulating a p53-dependent barrier to constrain Myc-overexpressing thymocytes from progressing into lymphomas by regulating Myc-collaborating genes. One Myc-collaborating and p53-suppressing gene, Jdp2, was derepressed in an Hdac1/2-dependent manner and critical for the survival of Jdp2-overexpressing lymphoma cells. Although reduced HDAC-activity facilitates oncogenic transformation in normal cells, resulting tumor cells remain highly dependent on HDAC-activity, indicating that a critical level of Hdac1 and Hdac2 governed HDAC-activity is required for tumor maintenance.


Assuntos
Dosagem de Genes/fisiologia , Genes Supressores de Tumor/fisiologia , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Proteínas Proto-Oncogênicas c-myc/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Células Cultivadas , Epistasia Genética/fisiologia , Dosagem de Genes/genética , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Genes/fisiologia , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/fisiologia , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/fisiologia , Linfoma/genética , Linfoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa