Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Allergy Clin Immunol ; 145(4): 1272-1284.e6, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31983527

RESUMO

BACKGROUND: The World Health Organization estimates that air pollution is responsible for 7 million deaths per annum, with 7% of these attributable to pneumonia. Many of these fatalities have been linked to exposure to high levels of airborne particulates, such as diesel exhaust particles (DEPs). OBJECTIVES: We sought to determine whether exposure to DEPs could promote the progression of asymptomatic nasopharyngeal carriage of Streptococcus pneumoniae to invasive pneumococcal disease. METHODS: We used mouse models and in vitro assays to provide a mechanistic understanding of the link between DEP exposure and pneumococcal disease risk, and we confirmed our findings by using induced sputum macrophages isolated from healthy human volunteers. RESULTS: We demonstrate that inhaled exposure to DEPs disrupts asymptomatic nasopharyngeal carriage of S pneumoniae in mice, leading to dissemination to lungs and blood. Pneumococci are transported from the nasopharynx to the lungs following exposure to DEPs, leading to increased proinflammatory cytokine production, reduced phagocytic function of alveolar macrophages, and consequently, increased pneumococcal loads within the lungs and translocation into blood. These findings were confirmed by using DEP-exposed induced sputum macrophages isolated from healthy volunteers, demonstrating that impaired innate immune mechanisms following DEP exposure are also at play in humans. CONCLUSION: Lung inhaled DEPs increase susceptibility to pneumococcal disease by leading to loss of immunological control of pneumococcal colonisation, increased inflammation, tissue damage, and systemic bacterial dissemination.


Assuntos
Pulmão/imunologia , Macrófagos/imunologia , Nasofaringe/patologia , Material Particulado/efeitos adversos , Pneumonia Pneumocócica/imunologia , Streptococcus pneumoniae/fisiologia , Animais , Bacteriemia , Portador Sadio , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Suscetibilidade a Doenças , Humanos , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nasofaringe/microbiologia , Fagocitose , Pneumonia Pneumocócica/epidemiologia , Risco , Emissões de Veículos
2.
PLoS Pathog ; 11(2): e1004641, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25654642

RESUMO

CD200 receptor (CD200R) negatively regulates peripheral and mucosal innate immune responses. Viruses, including herpesviruses, have acquired functional CD200 orthologs, implying that viral exploitation of this pathway is evolutionary advantageous. However, the role that CD200R signaling plays during herpesvirus infection in vivo requires clarification. Utilizing the murine cytomegalovirus (MCMV) model, we demonstrate that CD200R facilitates virus persistence within mucosal tissue. Specifically, MCMV infection of CD200R-deficient mice (CD200R(-/-)) elicited heightened mucosal virus-specific CD4 T cell responses that restricted virus persistence in the salivary glands. CD200R did not directly inhibit lymphocyte effector function. Instead, CD200R(-/-) mice exhibited enhanced APC accumulation that in the mucosa was a consequence of elevated cellular proliferation. Although MCMV does not encode an obvious CD200 homolog, productive replication in macrophages induced expression of cellular CD200. CD200 from hematopoietic and non-hematopoietic cells contributed independently to suppression of antiviral control in vivo. These results highlight the CD200-CD200R pathway as an important regulator of antiviral immunity during cytomegalovirus infection that is exploited by MCMV to establish chronicity within mucosal tissue.


Assuntos
Antígenos CD/imunologia , Infecções por Citomegalovirus/imunologia , Macrófagos/imunologia , Mucosa/imunologia , Mucosa/virologia , Animais , Citomegalovirus/imunologia , Infecções por Citomegalovirus/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Imunofluorescência , Macrófagos/metabolismo , Macrófagos/virologia , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos
3.
Microbiol Spectr ; 11(1): e0310322, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36507681

RESUMO

The short generation time of many bacterial pathogens allows the accumulation of de novo mutations during routine culture procedures used for the preparation and propagation of bacterial stocks. Taking the major human pathogen Streptococcus pneumoniae as an example, we sought to determine the influence of standard laboratory handling of microbes on within-strain genetic diversity and explore how these changes influence virulence characteristics and experimental outcomes. A single culture of S. pneumoniae D39 grown overnight resulted in the enrichment of previously rare genotypes present in bacterial freezer stocks and the introduction of new variation to the bacterial population through the acquisition of mutations. A comparison of D39 stocks from different laboratories demonstrated how changes in bacterial population structure taking place during individual culture events can cumulatively lead to fixed, divergent change that profoundly alters virulence characteristics. The passage of D39 through mouse models of infection, a process used to standardize virulence, resulted in the enrichment of high-fitness genotypes that were originally rare (<2% frequency) in D39 culture collection stocks and the loss of previously dominant genotypes. In the most striking example, the selection of a <2%-frequency genotype carrying a mutation in sdhB, a gene thought to be essential for the establishment of lung infection, was associated with enhanced systemic virulence. Three separately passaged D39 cultures originating from the same frozen stocks showed considerable genetic divergence despite comparable virulence. IMPORTANCE Laboratory bacteriology involves the use of high-density cultures that we often assume to be clonal but that in reality are populations consisting of multiple genotypes at various abundances. We have demonstrated that the genetic structure of a single population of a widely used Streptococcus pneumoniae strain can be substantially altered by even short-term laboratory handling and culture and that, over time, this can lead to changes in virulence characteristics. Our findings suggest that caution should be applied when comparing data generated in different laboratories using the same strain but also when comparing data within laboratories over time. Given the dramatic reductions in the cost of next-generation sequencing technology in recent years, we advocate for the frequent sampling and sequencing of bacterial isolate collections.


Assuntos
Proteínas de Bactérias , Streptococcus pneumoniae , Animais , Camundongos , Proteínas de Bactérias/genética , Mutação , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidade , Virulência/genética
4.
Cell Rep ; 42(2): 112054, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36724074

RESUMO

Streptococcus pneumoniae is a pathogen of global morbidity and mortality. Pneumococcal pneumonia can lead to systemic infections associated with high rates of mortality. We find that, upon pneumococcal infection, pulmonary Treg cells are activated and have upregulated TNFR2 expression. TNFR2-deficient mice have compromised Treg cell responses and highly activated IL-17A-producing γδ T cell (γδT17) responses, resulting in significantly enhanced neutrophil infiltration, tissue damage, and rapid development of bacteremia, mirroring responses in Treg cell-depleted mice. Deletion of total Treg cells predominantly activate IFNγ-T cell responses, whereas adoptive transfer of TNFR2+ Treg cells specifically suppress the γδT17 response, suggesting a targeted control of γδT17 activation by TNFR2+ Treg cells. Blocking IL-17A at early stage of infection significantly reduces bacterial blood dissemination and improves survival in TNFR2-deficient mice. Our results demonstrate that TNFR2 is critical for Treg cell-mediated regulation of pulmonary γδT17-neutrophil axis, with impaired TNFR2+ Treg cell responses increasing susceptibility to disease.


Assuntos
Bacteriemia , Pneumonia Pneumocócica , Camundongos , Animais , Pneumonia Pneumocócica/metabolismo , Linfócitos T Reguladores/metabolismo , Interleucina-17/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo
5.
Trends Microbiol ; 30(6): 581-592, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34949516

RESUMO

Streptococcus pneumoniae (the 'pneumococcus') is a significant cause of morbidity and mortality worldwide, causing life-threatening diseases such as pneumonia, bacteraemia, and meningitis, with an annual death burden of over one million. Discovered over a century ago, pneumococcal serotype 1 (S1) is a significant cause of these life-threatening diseases. Our understanding of the epidemiology and biology of pneumococcal S1 has significantly improved over the past two decades, informing the development of preventative and surveillance strategies. However, many questions remain unanswered. Here, we review the current state of knowledge of pneumococcal S1, with a special emphasis on clinical epidemiology, genomics, and disease mechanisms.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Genômica , Humanos , Infecções Pneumocócicas/epidemiologia , Sorogrupo , Streptococcus pneumoniae/genética
6.
Nat Commun ; 11(1): 1892, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312961

RESUMO

Streptococcus pneumoniae serotype 1 is the predominant cause of invasive pneumococcal disease in sub-Saharan Africa, but the mechanism behind its increased invasiveness is not well understood. Here, we use mouse models of lung infection to identify virulence factors associated with severe bacteraemic pneumonia during serotype-1 (ST217) infection. We use BALB/c mice, which are highly resistant to pneumococcal pneumonia when infected with other serotypes. However, we observe 100% mortality and high levels of bacteraemia within 24 hours when BALB/c mice are intranasally infected with ST217. Serotype 1 produces large quantities of pneumolysin, which is rapidly released due to high levels of bacterial autolysis. This leads to substantial levels of cellular cytotoxicity and breakdown of tight junctions between cells, allowing a route for rapid bacterial dissemination from the respiratory tract into the blood. Thus, our results offer an explanation for the increased invasiveness of serotype 1.


Assuntos
Autólise , Proteínas de Bactérias/metabolismo , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/patologia , Streptococcus pneumoniae/metabolismo , Streptococcus pneumoniae/patogenicidade , Estreptolisinas/metabolismo , Células A549 , Animais , Bacteriemia/microbiologia , Toxinas Bacterianas , Sobrevivência Celular , Modelos Animais de Doenças , Células Epiteliais/microbiologia , Feminino , Humanos , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Nasofaringe/microbiologia , Sorogrupo , Virulência , Fatores de Virulência
7.
Antiviral Res ; 114: 106-12, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25513756

RESUMO

UNLABELLED: 2009 H1N1 pandemic influenza (A(H1N1)pdm09) virus infected large numbers of people worldwide. Recent studies suggest infection with A(H1N1)pdm09 virus elicited cross-reactive anti-hemagglutinin (HA) memory B cell response to conserved regions of HA. However, the breadth and magnitude of cross-reactive immunity in children and adults following A(H1N1)pdm09 infection are unknown. METHODS: We investigated serum anti-HA immunity to a number of group-1 and -2 viruses in children and adults using hemagglutination inhibition (HAI), enzyme-linked immunosorbent assay and virus neutralization assay. RESULTS: Applying hemagglutination inhibition (HAI) titers ⩾40 against A(H1N1)pdm09 as threshold of sero-positivity, we observed significantly higher levels of anti-HA antibodies to a number of virus subtypes, including those neutralizing H5N1, in subjects with HAI titer ⩾40 than those with HAI <40. Adults demonstrated broader and stronger cross-reactive anti-HA antibodies than children, including cross-reactive anti-HA1 and -HA2 antibodies. By comparison, individuals with serologic evidence of recent exposure to seasonal H1N1 or H3N2 did not show such broad cross-reactive immunity. CONCLUSION: Our results suggest individuals exposed to A(H1N1)pdm09 virus developed a broad and age-associated cross-reactive anti-HA immunity which may have important implications for future vaccination strategies to enable protection against a broader range of influenza viruses.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Humana/imunologia , Pandemias , Adolescente , Adulto , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Criança , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Feminino , Testes de Inibição da Hemaglutinação , Humanos , Influenza Humana/epidemiologia , Influenza Humana/virologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa