Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Immunol ; 258: 109874, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113962

RESUMO

Sle1 and Faslpr are two lupus susceptibility loci that lead to manifestations of systemic lupus erythematosus. To evaluate the dosage effects of Faslpr in determining cellular and serological phenotypes associated with lupus, we developed a new C57BL/6 (B6) congenic lupus strain, B6.Sle1/Sle1.Faslpr/+ (Sle1homo.lprhet) and compared it with B6.Faslpr/lpr (lprhomo), B6.Sle1/Sle1 (Sle1homo), and B6.Sle1/Sle1.Faslpr/lpr (Sle1homo.lprhomo) strains. Whereas Sle1homo.lprhomo mice exhibited profound lymphoproliferation and early mortality, Sle1homo.lprhet mice had a lifespan comparable to B6 mice, with no evidence of splenomegaly or lymphadenopathy. Compared to B6 monogenic lupus strains, Sle1homo.lprhet mice exhibited significantly elevated serum ANA antibodies and increased proteinuria. Additionally, Sle1homo.lprhet T cells had an increased propensity to differentiate into Th1 cells. Gene dose effects of Faslpr were noted in upregulating serum IL-1⍺, IL-2, and IL-27. Taken together, Sle1homo.lprhet strain is a new C57BL/6-based model of lupus, ideal for genetic studies, autoantibody repertoire investigation, and for exploring Th1 effector cell skewing without early-age lymphoproliferative autoimmunity.


Assuntos
Lúpus Eritematoso Sistêmico , Camundongos , Animais , Camundongos Endogâmicos C57BL , Lúpus Eritematoso Sistêmico/genética , Autoimunidade , Diferenciação Celular , Dosagem de Genes , Camundongos Endogâmicos MRL lpr
2.
Nat Commun ; 15(1): 109, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168026

RESUMO

Host anti-viral factors are essential for controlling SARS-CoV-2 infection but remain largely unknown due to the biases of previous large-scale studies toward pro-viral host factors. To fill in this knowledge gap, we perform a genome-wide CRISPR dropout screen and integrate analyses of the multi-omics data of the CRISPR screen, genome-wide association studies, single-cell RNA-Seq, and host-virus proteins or protein/RNA interactome. This study uncovers many host factors that are currently underappreciated, including the components of V-ATPases, ESCRT, and N-glycosylation pathways that modulate viral entry and/or replication. The cohesin complex is also identified as an anti-viral pathway, suggesting an important role of three-dimensional chromatin organization in mediating host-viral interaction. Furthermore, we discover another anti-viral regulator KLF5, a transcriptional factor involved in sphingolipid metabolism, which is up-regulated, and harbors genetic variations linked to COVID-19 patients with severe symptoms. Anti-viral effects of three identified candidates (DAZAP2/VTA1/KLF5) are confirmed individually. Molecular characterization of DAZAP2/VTA1/KLF5-knockout cells highlights the involvement of genes related to the coagulation system in determining the severity of COVID-19. Together, our results provide further resources for understanding the host anti-viral network during SARS-CoV-2 infection and may help develop new countermeasure strategies.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Estudo de Associação Genômica Ampla , Multiômica , Antivirais/farmacologia
3.
Res Sq ; 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36032971

RESUMO

Host anti-viral factors are essential for controlling SARS-CoV-2 infection but remain largely unknown due to the biases of previous large-scale studies toward pro-viral host factors. To fill in this knowledge gap, we performed a genome-wide CRISPR dropout screen and integrated analyses of the multi-omics data of the CRISPR screen, genome-wide association studies, single-cell RNA-seq, and host-virus proteins or protein/RNA interactome. This study has uncovered many host factors that were missed by previous studies, including the components of V-ATPases, ESCRT, and N-glycosylation pathways that modulated viral entry and/or replication. The cohesin complex was also identified as a novel anti-viral pathway, suggesting an important role of three-dimensional chromatin organization in mediating host-viral interaction. Furthermore, we discovered an anti-viral regulator KLF5, a transcriptional factor involved in sphingolipid metabolism, which was up-regulated and harbored genetic variations linked to the COVID-19 patients with severe symptoms. Our results provide a resource for understanding the host anti-viral network during SARS-CoV-2 infection and may help develop new countermeasure strategies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa