Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 160(1-2): 324-38, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25557080

RESUMO

Pancreatic cancer is one of the most lethal malignancies due to its late diagnosis and limited response to treatment. Tractable methods to identify and interrogate pathways involved in pancreatic tumorigenesis are urgently needed. We established organoid models from normal and neoplastic murine and human pancreas tissues. Pancreatic organoids can be rapidly generated from resected tumors and biopsies, survive cryopreservation, and exhibit ductal- and disease-stage-specific characteristics. Orthotopically transplanted neoplastic organoids recapitulate the full spectrum of tumor development by forming early-grade neoplasms that progress to locally invasive and metastatic carcinomas. Due to their ability to be genetically manipulated, organoids are a platform to probe genetic cooperation. Comprehensive transcriptional and proteomic analyses of murine pancreatic organoids revealed genes and pathways altered during disease progression. The confirmation of many of these protein changes in human tissues demonstrates that organoids are a facile model system to discover characteristics of this deadly malignancy.


Assuntos
Carcinoma Ductal Pancreático/patologia , Modelos Biológicos , Técnicas de Cultura de Órgãos , Organoides/patologia , Neoplasias Pancreáticas/patologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Pâncreas/metabolismo , Pâncreas/patologia
2.
Genome Res ; 29(7): 1067-1077, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31221724

RESUMO

Nucleotide excision repair (NER) is one of the main DNA repair pathways that protect cells against genomic damage. Disruption of this pathway can contribute to the development of cancer and accelerate aging. Mutational characteristics of NER-deficiency may reveal important diagnostic opportunities, as tumors deficient in NER are more sensitive to certain treatments. Here, we analyzed the genome-wide somatic mutational profiles of adult stem cells (ASCs) from NER-deficient Ercc1 -/Δ mice. Our results indicate that NER-deficiency increases the base substitution load twofold in liver but not in small intestinal ASCs, which coincides with the tissue-specific aging pathology observed in these mice. Moreover, NER-deficient ASCs of both tissues show an increased contribution of Signature 8 mutations, which is a mutational pattern with unknown etiology that is recurrently observed in various cancer types. The scattered genomic distribution of the base substitutions indicates that deficiency of global-genome NER (GG-NER) underlies the observed mutational consequences. In line with this, we observe increased Signature 8 mutations in a GG-NER-deficient human organoid culture, in which XPC was deleted using CRISPR-Cas9 gene-editing. Furthermore, genomes of NER-deficient breast tumors show an increased contribution of Signature 8 mutations compared with NER-proficient tumors. Elevated levels of Signature 8 mutations could therefore contribute to a predictor of NER-deficiency based on a patient's mutational profile.


Assuntos
Reparo do DNA/genética , Mutação , Neoplasias/genética , Células-Tronco Adultas , Animais , Neoplasias da Mama/genética , Estudos de Coortes , Análise Mutacional de DNA , DNA de Neoplasias , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Feminino , Humanos , Camundongos , Organoides , Técnicas de Cultura de Tecidos , Sequenciamento Completo do Genoma
3.
Nature ; 538(7624): 260-264, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27698416

RESUMO

The gradual accumulation of genetic mutations in human adult stem cells (ASCs) during life is associated with various age-related diseases, including cancer. Extreme variation in cancer risk across tissues was recently proposed to depend on the lifetime number of ASC divisions, owing to unavoidable random mutations that arise during DNA replication. However, the rates and patterns of mutations in normal ASCs remain unknown. Here we determine genome-wide mutation patterns in ASCs of the small intestine, colon and liver of human donors with ages ranging from 3 to 87 years by sequencing clonal organoid cultures derived from primary multipotent cells. Our results show that mutations accumulate steadily over time in all of the assessed tissue types, at a rate of approximately 40 novel mutations per year, despite the large variation in cancer incidence among these tissues. Liver ASCs, however, have different mutation spectra compared to those of the colon and small intestine. Mutational signature analysis reveals that this difference can be attributed to spontaneous deamination of methylated cytosine residues in the colon and small intestine, probably reflecting their high ASC division rate. In liver, a signature with an as-yet-unknown underlying mechanism is predominant. Mutation spectra of driver genes in cancer show high similarity to the tissue-specific ASC mutation spectra, suggesting that intrinsic mutational processes in ASCs can initiate tumorigenesis. Notably, the inter-individual variation in mutation rate and spectra are low, suggesting tissue-specific activity of common mutational processes throughout life.


Assuntos
Células-Tronco Adultas/metabolismo , Envelhecimento/genética , Acúmulo de Mutações , Taxa de Mutação , Especificidade de Órgãos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Criança , Pré-Escolar , Colo/metabolismo , Análise Mutacional de DNA , Feminino , Genes Neoplásicos/genética , Humanos , Incidência , Intestino Delgado/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Células-Tronco Multipotentes/metabolismo , Neoplasias/epidemiologia , Neoplasias/genética , Organoides/metabolismo , Mutação Puntual/genética , Adulto Jovem
4.
Mol Cell Proteomics ; 17(10): 1892-1908, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29970458

RESUMO

Intrinsic and/or acquired resistance represents one of the great challenges in targeted cancer therapy. A deeper understanding of the molecular biology of cancer has resulted in more efficient strategies, where one or multiple drugs are adopted in novel therapies to tackle resistance. This beneficial effect of using combination treatments has also been observed in colorectal cancer patients harboring the BRAF(V600E) mutation, whereby dual inhibition of BRAF(V600E) and EGFR increases antitumor activity. Notwithstanding this success, it is not clear whether this combination treatment is the only or most effective treatment to block intrinsic resistance to BRAF inhibitors. Here, we investigate molecular responses upon single and multi-target treatments, over time, using BRAF(V600E) mutant colorectal cancer cells as a model system. Through integration of transcriptomic, proteomic and phosphoproteomics data we obtain a comprehensive overview, revealing both known and novel responses. We primarily observe widespread up-regulation of receptor tyrosine kinases and metabolic pathways upon BRAF inhibition. These findings point to mechanisms by which the drug-treated cells switch energy sources and enter a quiescent-like state as a defensive response, while additionally compensating for the MAPK pathway inhibition.


Assuntos
Neoplasias Colorretais/patologia , Receptores ErbB/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Biologia de Sistemas/métodos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/genética , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Receptores ErbB/metabolismo , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Modelos Biológicos , Mutação/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
Aging Cell ; 21(4): e13562, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246937

RESUMO

Organs age differently, causing wide heterogeneity in multimorbidity, but underlying mechanisms are largely elusive. To investigate the basis of organ-specific ageing, we utilized progeroid repair-deficient Ercc1Δ/- mouse mutants and systematically compared at the tissue, stem cell and organoid level two organs representing ageing extremes. Ercc1Δ/- intestine shows hardly any accelerated ageing. Nevertheless, we found apoptosis and reduced numbers of intestinal stem cells (ISCs), but cell loss appears compensated by over-proliferation. ISCs retain their organoid-forming capacity, but organoids perform poorly in culture, compared with WT. Conversely, liver ages dramatically, even causing early death in Ercc1-KO mice. Apoptosis, p21, polyploidization and proliferation of various (stem) cells were prominently elevated in Ercc1Δ/- liver and stem cell populations were either largely unaffected (Sox9+), or expanding (Lgr5+), but were functionally exhausted in organoid formation and development in vitro. Paradoxically, while intestine displays less ageing, repair in WT ISCs appears inferior to liver as shown by enhanced sensitivity to various DNA-damaging agents, and lower lesion removal. Our findings reveal organ-specific anti-ageing strategies. Intestine, with short lifespan limiting time for damage accumulation and repair, favours apoptosis of damaged cells relying on ISC plasticity. Liver with low renewal rates depends more on repair pathways specifically protecting the transcribed compartment of the genome to promote sustained functionality and cell preservation. As shown before, the hematopoietic system with intermediate self-renewal mainly invokes replication-linked mechanisms, apoptosis and senescence. Hence, organs employ different genome maintenance strategies, explaining heterogeneity in organ ageing and the segmental nature of DNA-repair-deficient progerias.


Assuntos
Envelhecimento , Dano ao DNA , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Dano ao DNA/genética , Reparo do DNA , Camundongos , Organoides/metabolismo , Células-Tronco/metabolismo
6.
Life (Basel) ; 12(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35054395

RESUMO

Identifying the cell of origin of cancer is important to guide treatment decisions. Machine learning approaches have been proposed to classify the cell of origin based on somatic mutation profiles from solid biopsies. However, solid biopsies can cause complications and certain tumors are not accessible. Liquid biopsies are promising alternatives but their somatic mutation profile is sparse and current machine learning models fail to perform in this setting. We propose an improved method to deal with sparsity in liquid biopsy data. Firstly, data augmentation is performed on sparse data to enhance model robustness. Secondly, we employ data integration to merge information from: (i) SNV density; (ii) SNVs in driver genes and (iii) trinucleotide motifs. Our adapted method achieves an average accuracy of 0.88 and 0.65 on data where only 70% and 2% of SNVs are retained, compared to 0.83 and 0.41 with the original model, respectively. The method and results presented here open the way for application of machine learning in the detection of the cell of origin of cancer from liquid biopsy data.

7.
NPJ Genom Med ; 6(1): 106, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887408

RESUMO

Levels of circulating tumor DNA (ctDNA) in liquid biopsies may serve as a sensitive biomarker for real-time, minimally-invasive tumor diagnostics and monitoring. However, detecting ctDNA is challenging, as much fewer than 5% of the cell-free DNA in the blood typically originates from the tumor. To detect lowly abundant ctDNA molecules based on somatic variants, extremely sensitive sequencing methods are required. Here, we describe a new technique, CyclomicsSeq, which is based on Oxford Nanopore sequencing of concatenated copies of a single DNA molecule. Consensus calling of the DNA copies increased the base-calling accuracy ~60×, enabling accurate detection of TP53 mutations at frequencies down to 0.02%. We demonstrate that a TP53-specific CyclomicsSeq assay can be successfully used to monitor tumor burden during treatment for head-and-neck cancer patients. CyclomicsSeq can be applied to any genomic locus and offers an accurate diagnostic liquid biopsy approach that can be implemented in clinical workflows.

8.
Commun Biol ; 4(1): 1301, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795391

RESUMO

Inflammatory liver disease increases the risk of developing primary liver cancer. The mechanism through which liver disease induces tumorigenesis remains unclear, but is thought to occur via increased mutagenesis. Here, we performed whole-genome sequencing on clonally expanded single liver stem cells cultured as intrahepatic cholangiocyte organoids (ICOs) from patients with alcoholic cirrhosis, non-alcoholic steatohepatitis (NASH), and primary sclerosing cholangitis (PSC). Surprisingly, we find that these precancerous liver disease conditions do not result in a detectable increased accumulation of mutations, nor altered mutation types in individual liver stem cells. This finding contrasts with the mutational load and typical mutational signatures reported for liver tumors, and argues against the hypothesis that liver disease drives tumorigenesis via a direct mechanism of induced mutagenesis. Disease conditions in the liver may thus act through indirect mechanisms to drive the transition from healthy to cancerous cells, such as changes to the microenvironment that favor the outgrowth of precancerous cells.


Assuntos
Colangite Esclerosante/genética , Cirrose Hepática Alcoólica/genética , Hepatopatias/genética , Mutagênese , Hepatopatia Gordurosa não Alcoólica/genética , Lesões Pré-Cancerosas/genética , Células-Tronco/metabolismo , Humanos , Fígado/fisiologia , Organoides/metabolismo
9.
Nat Commun ; 11(1): 3932, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753580

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Nat Commun ; 11(1): 2493, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427826

RESUMO

Genetic changes acquired during in vitro culture pose a risk for the successful application of stem cells in regenerative medicine. To assess the genetic risks induced by culturing, we determined all mutations in individual human stem cells by whole genome sequencing. Individual pluripotent, intestinal, and liver stem cells accumulate 3.5 ± 0.5, 7.2 ± 1.1 and 8.3 ± 3.6 base substitutions per population doubling, respectively. The annual in vitro mutation accumulation rate of adult stem cells is nearly 40-fold higher than the in vivo mutation accumulation rate. Mutational signature analysis reveals that in vitro induced mutations are caused by oxidative stress. Reducing oxygen tension in culture lowers the mutational load. We use the mutation rates, spectra, and genomic distribution to model the accumulation of oncogenic mutations during typical in vitro expansion, manipulation or screening experiments using human stem cells. Our study provides empirically defined parameters to assess the mutational risk of stem cell based therapies.


Assuntos
Células-Tronco Adultas/metabolismo , Análise Mutacional de DNA/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Adulto , Células-Tronco Adultas/citologia , Algoritmos , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Intestinos/citologia , Fígado/citologia , Fígado/metabolismo , Modelos Genéticos , Acúmulo de Mutações , Taxa de Mutação , Medicina Regenerativa/métodos , Sequenciamento Completo do Genoma/métodos
11.
Sci Rep ; 10(1): 21900, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33318612

RESUMO

The development, homeostasis, and repair of intrahepatic and extrahepatic bile ducts are thought to involve distinct mechanisms including proliferation and maturation of cholangiocyte and progenitor cells. This study aimed to characterize human extrahepatic cholangiocyte organoids (ECO) using canonical Wnt-stimulated culture medium previously developed for intrahepatic cholangiocyte organoids (ICO). Paired ECO and ICO were derived from common bile duct and liver tissue, respectively. Characterization showed both organoid types were highly similar, though some differences in size and gene expression were observed. Both ECO and ICO have cholangiocyte fate differentiation capacity. However, unlike ICO, ECO lack the potential for differentiation towards a hepatocyte-like fate. Importantly, ECO derived from a cystic fibrosis patient showed no CFTR channel activity but normal chloride channel and MDR1 transporter activity. In conclusion, this study shows that ECO and ICO have distinct lineage fate and that ECO provide a competent model to study extrahepatic bile duct diseases like cystic fibrosis.


Assuntos
Doenças dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Diferenciação Celular , Fibrose Cística/metabolismo , Organoides/metabolismo , Adolescente , Doenças dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Fibrose Cística/patologia , Humanos , Masculino , Organoides/patologia
12.
Sci Adv ; 5(5): eaaw1271, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31149636

RESUMO

A developing human fetus needs to balance rapid cellular expansion with maintaining genomic stability. Here, we accurately quantified and characterized somatic mutation accumulation in fetal tissues by analyzing individual stem cells from human fetal liver and intestine. Fetal mutation rates were about fivefold higher than in tissue-matched adult stem cells. The mutational landscape of fetal intestinal stem cells resembled that of adult intestinal stem cells, while the mutation spectrum of fetal liver stem cells is distinct from stem cells of the fetal intestine and the adult liver. Our analyses indicate that variation in mutational mechanisms, including oxidative stress and spontaneous deamination of methylated cytosines, contributes to the observed divergence in mutation accumulation patterns and drives genetic mosaicism in humans.


Assuntos
Feto/fisiologia , Mutação , Células-Tronco Adultas/fisiologia , Feto/citologia , Humanos , Intestinos/citologia , Intestinos/embriologia , Fígado/citologia , Fígado/embriologia , Taxa de Mutação , Especificidade de Órgãos , Pele/citologia , Pele/embriologia
13.
Nat Protoc ; 13(1): 59-78, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29215633

RESUMO

Characterization of mutational processes in adult stem cells (ASCs) will improve our understanding of aging-related diseases, such as cancer and organ failure, and may ultimately help prevent the development of these diseases. Here, we present a method for cataloging mutations in individual human ASCs without the necessity of using error-prone whole-genome amplification. Single ASCs are expanded in vitro into clonal organoid cultures to generate sufficient DNA for accurate whole-genome sequencing (WGS) analysis. We developed a data-analysis pipeline that identifies with high confidence somatic variants that accumulated in vivo in the original ASC. These genome-wide mutation catalogs are valuable resources for the characterization of the underlying mutational mechanisms. In addition, this protocol can be used to determine the effects of culture conditions or mutagen exposure on mutation accumulation in ASCs in vitro. Here, we describe a protocol for human liver ASCs that can be completed over a period of 3-4 months with hands-on time of ∼5 d.


Assuntos
Células-Tronco Adultas/citologia , Acúmulo de Mutações , Mutação/genética , Organoides/citologia , Sequenciamento Completo do Genoma/métodos , Células Cultivadas , DNA/análise , DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fígado/citologia
15.
Cell Rep ; 9(6): 2001-10, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25497101

RESUMO

Genomic rearrangements are a common cause of human congenital abnormalities. However, their origin and consequences are poorly understood. We performed molecular analysis of two patients with congenital disease who carried de novo genomic rearrangements. We found that the rearrangements in both patients hit genes that are recurrently rearranged in cancer (ETV1, FOXP1, and microRNA cluster C19MC) and drive formation of fusion genes similar to those described in cancer. Subsequent analysis of a large set of 552 de novo germline genomic rearrangements underlying congenital disorders revealed enrichment for genes rearranged in cancer and overlap with somatic cancer breakpoints. Breakpoints of common (inherited) germline structural variations also overlap with cancer breakpoints but are depleted for cancer genes. We propose that the same genomic positions are prone to genomic rearrangements in germline and soma but that timing and context of breakage determines whether developmental defects or cancer are promoted.


Assuntos
Aberrações Cromossômicas , Cromossomos Humanos/genética , Anormalidades Congênitas/genética , Rearranjo Gênico , Genoma Humano , Mutação em Linhagem Germinativa , Animais , Pontos de Quebra do Cromossomo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição Forkhead/genética , Células HEK293 , Humanos , MicroRNAs/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Peixe-Zebra
16.
Cell Rep ; 1(6): 648-55, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22813740

RESUMO

Chromothripsis represents a novel phenomenon in the structural variation landscape of cancer genomes. Here, we analyze the genomes of ten patients with congenital disease who were preselected to carry complex chromosomal rearrangements with more than two breakpoints. The rearrangements displayed unanticipated complexity resembling chromothripsis. We find that eight of them contain hallmarks of multiple clustered double-stranded DNA breaks (DSBs) on one or more chromosomes. In addition, nucleotide resolution analysis of 98 breakpoint junctions indicates that break repair involves nonhomologous or microhomology-mediated end joining. We observed that these eight rearrangements are balanced or contain sporadic deletions ranging in size between a few hundred base pairs and several megabases. The two remaining complex rearrangements did not display signs of DSBs and contain duplications, indicative of rearrangement processes involving template switching. Our work provides detailed insight into the characteristics of chromothripsis and supports a role for clustered DSBs driving some constitutional chromothripsis rearrangements.


Assuntos
Cromossomos Humanos/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Rearranjo Gênico/genética , Sequência de Bases , Quebra Cromossômica , Deleção Cromossômica , Duplicação Cromossômica/genética , Análise por Conglomerados , Replicação do DNA/genética , Genoma Humano/genética , Humanos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa