Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
BMC Pulm Med ; 21(1): 103, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33761909

RESUMO

BACKGROUND: Lung auscultation is fundamental to the clinical diagnosis of respiratory disease. However, auscultation is a subjective practice and interpretations vary widely between users. The digitization of auscultation acquisition and interpretation is a particularly promising strategy for diagnosing and monitoring infectious diseases such as Coronavirus-19 disease (COVID-19) where automated analyses could help decentralise care and better inform decision-making in telemedicine. This protocol describes the standardised collection of lung auscultations in COVID-19 triage sites and a deep learning approach to diagnostic and prognostic modelling for future incorporation into an intelligent autonomous stethoscope benchmarked against human expert interpretation. METHODS: A total of 1000 consecutive, patients aged ≥ 16 years and meeting COVID-19 testing criteria will be recruited at screening sites and amongst inpatients of the internal medicine department at the Geneva University Hospitals, starting from October 2020. COVID-19 is diagnosed by RT-PCR on a nasopharyngeal swab and COVID-positive patients are followed up until outcome (i.e., discharge, hospitalisation, intubation and/or death). At inclusion, demographic and clinical data are collected, such as age, sex, medical history, and signs and symptoms of the current episode. Additionally, lung auscultation will be recorded with a digital stethoscope at 6 thoracic sites in each patient. A deep learning algorithm (DeepBreath) using a Convolutional Neural Network (CNN) and Support Vector Machine classifier will be trained on these audio recordings to derive an automated prediction of diagnostic (COVID positive vs negative) and risk stratification categories (mild to severe). The performance of this model will be compared to a human prediction baseline on a random subset of lung sounds, where blinded physicians are asked to classify the audios into the same categories. DISCUSSION: This approach has broad potential to standardise the evaluation of lung auscultation in COVID-19 at various levels of healthcare, especially in the context of decentralised triage and monitoring. TRIAL REGISTRATION: PB_2016-00500, SwissEthics. Registered on 6 April 2020.


Assuntos
Auscultação/métodos , Teste para COVID-19/métodos , COVID-19/diagnóstico , Aprendizado Profundo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Estudos de Casos e Controles , Regras de Decisão Clínica , Protocolos Clínicos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Medição de Risco , Triagem , Adulto Jovem
2.
PLOS Digit Health ; 2(7): e0000108, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37459285

RESUMO

Clinical Decision Support Systems (CDSS) have the potential to improve and standardise care with probabilistic guidance. However, many CDSS deploy static, generic rule-based logic, resulting in inequitably distributed accuracy and inconsistent performance in evolving clinical environments. Data-driven models could resolve this issue by updating predictions according to the data collected. However, the size of data required necessitates collaborative learning from analogous CDSS's, which are often imperfectly interoperable (IIO) or unshareable. We propose Modular Clinical Decision Support Networks (MoDN) which allow flexible, privacy-preserving learning across IIO datasets, as well as being robust to the systematic missingness common to CDSS-derived data, while providing interpretable, continuous predictive feedback to the clinician. MoDN is a novel decision tree composed of feature-specific neural network modules that can be combined in any number or combination to make any number or combination of diagnostic predictions, updatable at each step of a consultation. The model is validated on a real-world CDSS-derived dataset, comprising 3,192 paediatric outpatients in Tanzania. MoDN significantly outperforms 'monolithic' baseline models (which take all features at once at the end of a consultation) with a mean macro F1 score across all diagnoses of 0.749 vs 0.651 for logistic regression and 0.620 for multilayer perceptron (p < 0.001). To test collaborative learning between IIO datasets, we create subsets with various percentages of feature overlap and port a MoDN model trained on one subset to another. Even with only 60% common features, fine-tuning a MoDN model on the new dataset or just making a composite model with MoDN modules matched the ideal scenario of sharing data in a perfectly interoperable setting. MoDN integrates into consultation logic by providing interpretable continuous feedback on the predictive potential of each question in a CDSS questionnaire. The modular design allows it to compartmentalise training updates to specific features and collaboratively learn between IIO datasets without sharing any data.

3.
NPJ Digit Med ; 6(1): 104, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268730

RESUMO

The interpretation of lung auscultation is highly subjective and relies on non-specific nomenclature. Computer-aided analysis has the potential to better standardize and automate evaluation. We used 35.9 hours of auscultation audio from 572 pediatric outpatients to develop DeepBreath : a deep learning model identifying the audible signatures of acute respiratory illness in children. It comprises a convolutional neural network followed by a logistic regression classifier, aggregating estimates on recordings from eight thoracic sites into a single prediction at the patient-level. Patients were either healthy controls (29%) or had one of three acute respiratory illnesses (71%) including pneumonia, wheezing disorders (bronchitis/asthma), and bronchiolitis). To ensure objective estimates on model generalisability, DeepBreath is trained on patients from two countries (Switzerland, Brazil), and results are reported on an internal 5-fold cross-validation as well as externally validated (extval) on three other countries (Senegal, Cameroon, Morocco). DeepBreath differentiated healthy and pathological breathing with an Area Under the Receiver-Operator Characteristic (AUROC) of 0.93 (standard deviation [SD] ± 0.01 on internal validation). Similarly promising results were obtained for pneumonia (AUROC 0.75 ± 0.10), wheezing disorders (AUROC 0.91 ± 0.03), and bronchiolitis (AUROC 0.94 ± 0.02). Extval AUROCs were 0.89, 0.74, 0.74 and 0.87 respectively. All either matched or were significant improvements on a clinical baseline model using age and respiratory rate. Temporal attention showed clear alignment between model prediction and independently annotated respiratory cycles, providing evidence that DeepBreath extracts physiologically meaningful representations. DeepBreath provides a framework for interpretable deep learning to identify the objective audio signatures of respiratory pathology.

4.
JMIR Mhealth Uhealth ; 10(3): e34148, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35333186

RESUMO

BACKGROUND: In 2017, an estimated 17.3 million adults in the United States experienced at least one major depressive episode, with 35% of them not receiving any treatment. Underdiagnosis of depression has been attributed to many reasons, including stigma surrounding mental health, limited access to medical care, and barriers due to cost. OBJECTIVE: This study aimed to determine if low-burden personal health solutions, leveraging person-generated health data (PGHD), could represent a possible way to increase engagement and improve outcomes. METHODS: Here, we present the development of PSYCHE-D (Prediction of Severity Change-Depression), a predictive model developed using PGHD from more than 4000 individuals, which forecasts the long-term increase in depression severity. PSYCHE-D uses a 2-phase approach. The first phase supplements self-reports with intermediate generated labels, and the second phase predicts changing status over a 3-month period, up to 2 months in advance. The 2 phases are implemented as a single pipeline in order to eliminate data leakage and ensure results are generalizable. RESULTS: PSYCHE-D is composed of 2 Light Gradient Boosting Machine (LightGBM) algorithm-based classifiers that use a range of PGHD input features, including objective activity and sleep, self-reported changes in lifestyle and medication, and generated intermediate observations of depression status. The approach generalizes to previously unseen participants to detect an increase in depression severity over a 3-month interval, with a sensitivity of 55.4% and a specificity of 65.3%, nearly tripling sensitivity while maintaining specificity when compared with a random model. CONCLUSIONS: These results demonstrate that low-burden PGHD can be the basis of accurate and timely warnings that an individual's mental health may be deteriorating. We hope this work will serve as a basis for improved engagement and treatment of individuals experiencing depression.


Assuntos
Transtorno Depressivo Maior , Adulto , Estudos de Casos e Controles , Depressão/diagnóstico , Humanos , Saúde Mental , Autorrelato
5.
PLOS Glob Public Health ; 2(8): e0000721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36962770

RESUMO

BACKGROUND: After 18 months of responding to the COVID-19 pandemic, there is still no agreement on the optimal combination of mitigation strategies. The efficacy and collateral damage of pandemic policies are dependent on constantly evolving viral epidemiology as well as the volatile distribution of socioeconomic and cultural factors. This study proposes a data-driven approach to quantify the efficacy of the type, duration, and stringency of COVID-19 mitigation policies in terms of transmission control and economic loss, personalised to individual countries. METHODS: We present What If…?, a deep learning pandemic-policy-decision-support algorithm simulating pandemic scenarios to guide and evaluate policy impact in real time. It leverages a uniquely diverse live global data-stream of socioeconomic, demographic, climatic, and epidemic trends on over a year of data (04/2020-06/2021) from 116 countries. The economic damage of the policies is also evaluated on the 29 higher income countries for which data is available. The efficacy and economic damage estimates are derived from two neural networks that infer respectively the daily R-value (RE) and unemployment rate (UER). Reinforcement learning then pits these models against each other to find the optimal policies minimising both RE and UER. FINDINGS: The models made high accuracy predictions of RE and UER (average mean squared errors of 0.043 [CI95: 0.042-0.044] and 4.473% [CI95: 2.619-6.326] respectively), which allow the computation of country-specific policy efficacy in terms of cost and benefit. In the 29 countries where economic information was available, the reinforcement learning agent suggested a policy mix that is predicted to outperform those implemented in reality by over 10-fold for RE reduction (0.250 versus 0.025) and at 28-fold less cost in terms of UER (1.595% versus 0.057%). CONCLUSION: These results show that deep learning has the potential to guide evidence-based understanding and implementation of public health policies.

6.
Microsyst Nanoeng ; 8: 19, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211323

RESUMO

The identification of nanomaterials with the properties required for energy-efficient electronic systems is usually a tedious human task. A workflow to rapidly localize and characterize nanomaterials at the various stages of their integration into large-scale fabrication processes is essential for quality control and, ultimately, their industrial adoption. In this work, we develop a high-throughput approach to rapidly identify suspended carbon nanotubes (CNTs) by using high-speed Raman imaging and deep learning analysis. Even for Raman spectra with extremely low signal-to-noise ratios (SNRs) of 0.9, we achieve a classification accuracy that exceeds 90%, while it reaches 98% for an SNR of 2.2. By applying a threshold on the output of the softmax layer of an optimized convolutional neural network (CNN), we further increase the accuracy of the classification. Moreover, we propose an optimized Raman scanning strategy to minimize the acquisition time while simultaneously identifying the position, amount, and metallicity of CNTs on each sample. Our approach can readily be extended to other types of nanomaterials and has the potential to be integrated into a production line to monitor the quality and properties of nanomaterials during fabrication.

7.
Digit Biomark ; 4(Suppl 1): 59-72, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33442581

RESUMO

BACKGROUND: Fatigue is a broad, multifactorial concept encompassing feelings of reduced physical and mental energy levels. Fatigue strongly impacts patient health-related quality of life across a huge range of conditions, yet, to date, tools available to understand fatigue are severely limited. METHODS: After using a recurrent neural network-based algorithm to impute missing time series data form a multisensor wearable device, we compared supervised and unsupervised machine learning approaches to gain insights on the relationship between self-reported non-pathological fatigue and multimodal sensor data. RESULTS: A total of 27 healthy subjects and 405 recording days were analyzed. Recorded data included continuous multimodal wearable sensor time series on physical activity, vital signs, and other physiological parameters, and daily questionnaires on fatigue. The best results were obtained when using the causal convolutional neural network model for unsupervised representation learning of multivariate sensor data, and random forest as a classifier trained on subject-reported physical fatigue labels (weighted precision of 0.70 ± 0.03 and recall of 0.73 ± 0.03). When using manually engineered features on sensor data to train our random forest (weighted precision of 0.70 ± 0.05 and recall of 0.72 ± 0.01), both physical activity (energy expenditure, activity counts, and steps) and vital signs (heart rate, heart rate variability, and respiratory rate) were important parameters to measure. Furthermore, vital signs contributed the most as top features for predicting mental fatigue compared to physical ones. These results support the idea that fatigue is a highly multimodal concept. Analysis of clusters from sensor data highlighted a digital phenotype indicating the presence of fatigue (95% of observations) characterized by a high intensity of physical activity. Mental fatigue followed similar trends but was less predictable. Potential future directions could focus on anomaly detection assuming longer individual monitoring periods. CONCLUSION: Taken together, these results are the first demonstration that multimodal digital data can be used to inform, quantify, and augment subjectively captured non-pathological fatigue measures.

8.
Physiol Meas ; 41(1): 014001, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31851948

RESUMO

OBJECTIVE: Acute intracranial hypertension is an important risk factor of secondary brain damage after traumatic brain injury. Hypertensive episodes are often diagnosed reactively, leading to late detection and lost time for intervention planning. A pro-active approach that predicts critical events several hours ahead of time could assist in directing attention to patients at risk. APPROACH: We developed a prediction framework that forecasts onsets of acute intracranial hypertension in the next 8 h. It jointly uses cerebral auto-regulation indices, spectral energies and morphological pulse metrics to describe the neurological state of the patient. One-minute base windows were compressed by computing signal metrics, and then stored in a multi-scale history, from which physiological features were derived. MAIN RESULTS: Our model predicted events up to 8 h in advance with an alarm recall rate of 90% at a precision of 30% in the MIMIC-III waveform database, improving upon two baselines from the literature. We found that features derived from high-frequency waveforms substantially improved the prediction performance over simple statistical summaries of low-frequency time series, and each of the three feature classes contributed to the performance gain. The inclusion of long-term history up to 8 h was especially important. SIGNIFICANCE: Our results highlight the importance of information contained in high-frequency waveforms in the neurological intensive care unit. They could motivate future studies on pre-hypertensive patterns and the design of new alarm algorithms for critical events in the injured brain.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Hipertensão Intracraniana/etiologia , Pressão Intracraniana , Modelos Neurológicos , Monitorização Neurofisiológica , Idoso , Feminino , Previsões , Homeostase , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa