Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Mol Cell ; 83(23): 4318-4333.e10, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37989319

RESUMO

RNA unwinding by DExH-type helicases underlies most RNA metabolism and function. It remains unresolved if and how the basic unwinding reaction of helicases is regulated by auxiliary domains. We explored the interplay between the RecA and auxiliary domains of the RNA helicase maleless (MLE) from Drosophila using structural and functional studies. We discovered that MLE exists in a dsRNA-bound open conformation and that the auxiliary dsRBD2 domain aligns the substrate RNA with the accessible helicase tunnel. In an ATP-dependent manner, dsRBD2 associates with the helicase module, leading to tunnel closure around ssRNA. Furthermore, our structures provide a rationale for blunt-ended dsRNA unwinding and 3'-5' translocation by MLE. Structure-based MLE mutations confirm the functional relevance of our model for RNA unwinding. Our findings contribute to our understanding of the fundamental mechanics of auxiliary domains in DExH helicase MLE, which serves as a model for its human ortholog and potential therapeutic target, DHX9/RHA.


Assuntos
Proteínas de Drosophila , RNA Helicases , Animais , Humanos , Proteínas Cromossômicas não Histona/genética , DNA Helicases/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Homeostase , RNA/metabolismo , RNA Helicases/metabolismo , RNA de Cadeia Dupla/genética , Fatores de Transcrição/metabolismo
2.
Genes Dev ; 35(13-14): 1055-1070, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34140353

RESUMO

The dosage compensation complex (DCC) of Drosophila identifies its X-chromosomal binding sites with exquisite selectivity. The principles that assure this vital targeting are known from the D. melanogaster model: DCC-intrinsic specificity of DNA binding, cooperativity with the CLAMP protein, and noncoding roX2 RNA transcribed from the X chromosome. We found that in D. virilis, a species separated from melanogaster by 40 million years of evolution, all principles are active but contribute differently to X specificity. In melanogaster, the DCC subunit MSL2 evolved intrinsic DNA-binding selectivity for rare PionX sites, which mark the X chromosome. In virilis, PionX motifs are abundant and not X-enriched. Accordingly, MSL2 lacks specific recognition. Here, roX2 RNA plays a more instructive role, counteracting a nonproductive interaction of CLAMP and modulating DCC binding selectivity. Remarkably, roX2 triggers a stable chromatin binding mode characteristic of DCC. Evidently, X-specific regulation is achieved by divergent evolution of protein, DNA, and RNA components.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Mecanismo Genético de Compensação de Dose , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Cromossomos Sexuais/metabolismo , Fatores de Transcrição/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo
3.
Genes Dev ; 35(13-14): 976-991, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34140355

RESUMO

Kinesin-1 carries cargos including proteins, RNAs, vesicles, and pathogens over long distances within cells. The mechanochemical cycle of kinesins is well described, but how they establish cargo specificity is not fully understood. Transport of oskar mRNA to the posterior pole of the Drosophila oocyte is mediated by Drosophila kinesin-1, also called kinesin heavy chain (Khc), and a putative cargo adaptor, the atypical tropomyosin, aTm1. How the proteins cooperate in mRNA transport is unknown. Here, we present the high-resolution crystal structure of a Khc-aTm1 complex. The proteins form a tripartite coiled coil comprising two in-register Khc chains and one aTm1 chain, in antiparallel orientation. We show that aTm1 binds to an evolutionarily conserved cargo binding site on Khc, and mutational analysis confirms the importance of this interaction for mRNA transport in vivo. Furthermore, we demonstrate that Khc binds RNA directly and that it does so via its alternative cargo binding domain, which forms a positively charged joint surface with aTm1, as well as through its adjacent auxiliary microtubule binding domain. Finally, we show that aTm1 plays a stabilizing role in the interaction of Khc with RNA, which distinguishes aTm1 from classical motor adaptors.


Assuntos
Proteínas de Drosophila , Cinesinas , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Cinesinas/genética , Microtúbulos/metabolismo , Transporte de RNA , RNA Mensageiro/metabolismo , Tropomiosina/metabolismo
4.
Nucleic Acids Res ; 51(4): 1895-1913, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36688322

RESUMO

RNA binding proteins (RBPs) often engage multiple RNA binding domains (RBDs) to increase target specificity and affinity. However, the complexity of target recognition of multiple RBDs remains largely unexplored. Here we use Upstream of N-Ras (Unr), a multidomain RBP, to demonstrate how multiple RBDs orchestrate target specificity. A crystal structure of the three C-terminal RNA binding cold-shock domains (CSD) of Unr bound to a poly(A) sequence exemplifies how recognition goes beyond the classical ππ-stacking in CSDs. Further structural studies reveal several interaction surfaces between the N-terminal and C-terminal part of Unr with the poly(A)-binding protein (pAbp). All interactions are validated by mutational analyses and the high-resolution structures presented here will guide further studies to understand how both proteins act together in cellular processes.


Assuntos
Proteínas de Ligação a Poli(A) , RNA , Resposta ao Choque Frio , Proteínas de Ligação a DNA/genética , Poli A/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Ligação Proteica , RNA/química
5.
Nucleic Acids Res ; 49(15): 8866-8885, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34329466

RESUMO

A key regulatory process during Drosophila development is the localized suppression of the hunchback mRNA translation at the posterior, which gives rise to a hunchback gradient governing the formation of the anterior-posterior body axis. This suppression is achieved by a concerted action of Brain Tumour (Brat), Pumilio (Pum) and Nanos. Each protein is necessary for proper Drosophila development. The RNA contacts have been elucidated for the proteins individually in several atomic-resolution structures. However, the interplay of all three proteins during RNA suppression remains a long-standing open question. Here, we characterize the quaternary complex of the RNA-binding domains of Brat, Pum and Nanos with hunchback mRNA by combining NMR spectroscopy, SANS/SAXS, XL/MS with MD simulations and ITC assays. The quaternary hunchback mRNA suppression complex comprising the RNA binding domains is flexible with unoccupied nucleotides functioning as a flexible linker between the Brat and Pum-Nanos moieties of the complex. Moreover, the presence of the Pum-HD/Nanos-ZnF complex has no effect on the equilibrium RNA binding affinity of the Brat RNA binding domain. This is in accordance with previous studies, which showed that Brat can suppress mRNA independently and is distributed uniformly throughout the embryo.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Desenvolvimento Embrionário/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Animais , Padronização Corporal/genética , Proteínas de Ligação a DNA/ultraestrutura , Proteínas de Drosophila/ultraestrutura , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/ultraestrutura , Proteínas de Ligação a RNA/ultraestrutura , Espalhamento a Baixo Ângulo , Fatores de Transcrição/ultraestrutura , Difração de Raios X
6.
J Am Chem Soc ; 144(49): 22493-22504, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36413626

RESUMO

Pancreatic cancer has the lowest survival rate of all common cancers due to late diagnosis and limited treatment options. Serine hydrolases are known to mediate cancer progression and metastasis through initiation of signaling cascades and cleavage of extracellular matrix proteins, and the kallikrein-related peptidase (KLK) family of secreted serine proteases have emerging roles in pancreatic ductal adenocarcinoma (PDAC). However, the lack of reliable activity-based probes (ABPs) to profile KLK activity has hindered progress in validation of these enzymes as potential targets or biomarkers. Here, we developed potent and selective ABPs for KLK6 by using a positional scanning combinatorial substrate library and characterized their binding mode and interactions by X-ray crystallography. The optimized KLK6 probe IMP-2352 (kobs/I = 11,000 M-1 s-1) enabled selective detection of KLK6 activity in a variety of PDAC cell lines, and we observed that KLK6 inhibition reduced the invasiveness of PDAC cells that secrete active KLK6. KLK6 inhibitors were combined with N-terminomics to identify potential secreted protein substrates of KLK6 in PDAC cells, providing insights into KLK6-mediated invasion pathways. These novel KLK6 ABPs offer a toolset to validate KLK6 and associated signaling partners as targets or biomarkers across a range of diseases.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Calicreínas/metabolismo , Invasividade Neoplásica , Neoplasias Pancreáticas
7.
Mol Microbiol ; 115(2): 175-190, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32979851

RESUMO

Thermally processed food is an important part of the human diet. Heat-treatment, however, promotes the formation of so-called Amadori rearrangement products, such as fructoselysine. The gut microbiota including Escherichia coli can utilize these compounds as a nutrient source. While the degradation route for fructoselysine is well described, regulation of the corresponding pathway genes frlABCD remained poorly understood. Here, we used bioinformatics combined with molecular and biochemical analyses and show that fructoselysine metabolism in E. coli is tightly controlled at the transcriptional level. The global regulator CRP (CAP) as well as the alternative sigma factor σ32 (RpoH) contribute to promoter activation at high cAMP-levels and inside warm-blooded hosts, respectively. In addition, we identified and characterized a transcriptional regulator FrlR, encoded adjacent to frlABCD, as fructoselysine-6-phosphate specific repressor. Our study provides profound evidence that the interplay of global and substrate-specific regulation is a perfect adaptation strategy to efficiently utilize unusual substrates within the human gut environment.


Assuntos
Lisina/análogos & derivados , Sequência de Aminoácidos/genética , Proteína Receptora de AMP Cíclico/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Microbioma Gastrointestinal/fisiologia , Regulação Bacteriana da Expressão Gênica/genética , Proteínas de Choque Térmico/metabolismo , Lisina/química , Lisina/genética , Lisina/metabolismo , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética
8.
Proc Natl Acad Sci U S A ; 113(30): E4357-66, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27357661

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is a large, multidomain protein containing two catalytic domains: a Ras of complex proteins (Roc) G-domain and a kinase domain. Mutations associated with familial and sporadic Parkinson's disease (PD) have been identified in both catalytic domains, as well as in several of its multiple putative regulatory domains. Several of these mutations have been linked to increased kinase activity. Despite the role of LRRK2 in the pathogenesis of PD, little is known about its overall architecture and how PD-linked mutations alter its function and enzymatic activities. Here, we have modeled the 3D structure of dimeric, full-length LRRK2 by combining domain-based homology models with multiple experimental constraints provided by chemical cross-linking combined with mass spectrometry, negative-stain EM, and small-angle X-ray scattering. Our model reveals dimeric LRRK2 has a compact overall architecture with a tight, multidomain organization. Close contacts between the N-terminal ankyrin and C-terminal WD40 domains, and their proximity-together with the LRR domain-to the kinase domain suggest an intramolecular mechanism for LRRK2 kinase activity regulation. Overall, our studies provide, to our knowledge, the first structural framework for understanding the role of the different domains of full-length LRRK2 in the pathogenesis of PD.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mutação , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Homologia de Sequência de Aminoácidos
9.
Angew Chem Int Ed Engl ; 58(28): 9429-9433, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31100184

RESUMO

The recently discovered SAFit class of inhibitors against the Hsp90 co-chaperone FKBP51 show greater than 10 000-fold selectivity over its closely related paralogue FKBP52. However, the mechanism underlying this selectivity remained unknown. By combining NMR spectroscopy, biophysical and computational methods with mutational analysis, we show that the SAFit molecules bind to a transient pocket in FKBP51. This represents a weakly populated conformation resembling the inhibitor-bound state of FKBP51, suggesting conformational selection rather than induced fit as the major binding mechanism. The inhibitor-bound conformation of FKBP51 is stabilized by an allosteric network of residues located away from the inhibitor-binding site. These residues stabilize the Phe67 side chain in a dynamic outward conformation and are distinct in FKBP52, thus rationalizing the basis for the selectivity of SAFit inhibitors. Our results represent a paradigm for the selective inhibition of transient binding pockets.

10.
Angew Chem Int Ed Engl ; 56(32): 9322-9325, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28636238

RESUMO

Multi-domain proteins play critical roles in fine-tuning essential processes in cellular signaling and gene regulation. Typically, multiple globular domains that are connected by flexible linkers undergo dynamic rearrangements upon binding to protein, DNA or RNA ligands. RNA binding proteins (RBPs) represent an important class of multi-domain proteins, which regulate gene expression by recognizing linear or structured RNA sequence motifs. Here, we employ segmental perdeuteration of the three RNA recognition motif (RRM) domains in the RBP TIA-1 using Sortase A mediated protein ligation. We show that domain-selective perdeuteration combined with contrast-matched small-angle neutron scattering (SANS), SAXS and computational modeling provides valuable information to precisely define relative domain arrangements. The approach is generally applicable to study conformational arrangements of individual domains in multi-domain proteins and changes induced by ligand binding.


Assuntos
Proteínas com Motivo de Reconhecimento de RNA/química , Humanos , Difração de Nêutrons , Conformação Proteica , Espalhamento a Baixo Ângulo
11.
Nucleic Acids Res ; 42(9): 5949-66, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24682828

RESUMO

Alternative pre-messenger ribonucleic acid (pre-mRNA) splicing is an essential process in eukaryotic gene regulation. The T-cell intracellular antigen-1 (TIA-1) is an apoptosis-promoting factor that modulates alternative splicing of transcripts, including the pre-mRNA encoding the membrane receptor Fas. TIA-1 is a multi-domain ribonucleic acid (RNA) binding protein that recognizes poly-uridine tract RNA sequences to facilitate 5' splice site recognition by the U1 small nuclear ribonucleoprotein (snRNP). Here, we characterize the RNA interaction and conformational dynamics of TIA-1 by nuclear magnetic resonance (NMR), isothermal titration calorimetry (ITC) and small angle X-ray scattering (SAXS). Our NMR-derived solution structure of TIA-1 RRM2-RRM3 (RRM2,3) reveals that RRM2 adopts a canonical RNA recognition motif (RRM) fold, while RRM3 is preceded by an non-canonical helix α0. NMR and SAXS data show that all three RRMs are largely independent structural modules in the absence of RNA, while RNA binding induces a compact arrangement. RRM2,3 binds to pyrimidine-rich FAS pre-mRNA or poly-uridine (U9) RNA with nanomolar affinities. RRM1 has little intrinsic RNA binding affinity and does not strongly contribute to RNA binding in the context of RRM1,2,3. Our data unravel the role of binding avidity and the contributions of the TIA-1 RRMs for recognition of pyrimidine-rich RNAs.


Assuntos
Proteínas de Ligação a Poli(A)/química , RNA Mensageiro/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Íntrons , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Terciária de Proteína , Precursores de RNA/química , Espalhamento a Baixo Ângulo , Soluções , Antígeno-1 Intracelular de Células T , Difração de Raios X
13.
J Biol Chem ; 287(47): 39524-37, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22969087

RESUMO

N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmU), a bifunctional enzyme involved in bacterial cell wall synthesis is exclusive to prokaryotes. GlmU, now recognized as a promising target to develop new antibacterial drugs, catalyzes two key reactions: acetyl transfer and uridyl transfer at two independent domains. Hitherto, we identified GlmU from Mycobacterium tuberculosis (GlmU(Mtb)) to be unique in possessing a 30-residue extension at the C terminus. Here, we present the crystal structures of GlmU(Mtb) in complex with substrates/products bound at the acetyltransferase active site. Analysis of these and mutational data, allow us to infer a catalytic mechanism operative in GlmU(Mtb). In this S(N)2 reaction, His-374 and Asn-397 act as catalytic residues by enhancing the nucleophilicity of the attacking amino group of glucosamine 1-phosphate. Ser-416 and Trp-460 provide important interactions for substrate binding. A short helix at the C-terminal extension uniquely found in mycobacterial GlmU provides the highly conserved Trp-460 for substrate binding. Importantly, the structures reveal an uncommon mode of acetyl-CoA binding in GlmU(Mtb); we term this the U conformation, which is distinct from the L conformation seen in the available non-mycobacterial GlmU structures. Residues, likely determining U/L conformation, were identified, and their importance was evaluated. In addition, we identified that the primary site for PknB-mediated phosphorylation is Thr-418, near the acetyltransferase active site. Down-regulation of acetyltransferase activity upon Thr-418 phosphorylation is rationalized by the structures presented here. Overall, this work provides an insight into substrate recognition, catalytic mechanism for acetyl transfer, and features unique to GlmU(Mtb), which may be exploited for the development of inhibitors specific to GlmU.


Assuntos
Acetilcoenzima A/química , Acetiltransferases/química , Proteínas de Bactérias/química , Complexos Multienzimáticos/química , Mycobacterium tuberculosis/enzimologia , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Cristalografia por Raios X , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mycobacterium tuberculosis/genética , Fosforilação/fisiologia , Estrutura Terciária de Proteína , Especificidade por Substrato/fisiologia
14.
Nat Commun ; 14(1): 4233, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454201

RESUMO

The RNA-binding motif protein RBM5 belongs to a family of multi-domain RNA binding proteins that regulate alternative splicing of genes important for apoptosis and cell proliferation and have been implicated in cancer. RBM5 harbors structural modules for RNA recognition, such as RRM domains and a Zn finger, and protein-protein interactions such as an OCRE domain. Here, we characterize binding of the RBM5 RRM1-ZnF1-RRM2 domains to cis-regulatory RNA elements. A structure of the RRM1-ZnF1 region in complex with RNA shows how the tandem domains cooperate to sandwich target RNA and specifically recognize a GG dinucleotide in a non-canonical fashion. While the RRM1-ZnF1 domains act as a single structural module, RRM2 is connected by a flexible linker and tumbles independently. However, all three domains participate in RNA binding and adopt a closed architecture upon RNA binding. Our data highlight how cooperativity and conformational modularity of multiple RNA binding domains enable the recognition of distinct RNA motifs, thereby contributing to the regulation of alternative splicing. Remarkably, we observe surprising differences in coupling of the RNA binding domains between the closely related homologs RBM5 and RBM10.


Assuntos
Processamento Alternativo , RNA , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Motivos de Nucleotídeos , Splicing de RNA
15.
RSC Adv ; 12(41): 26989-26993, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36320846

RESUMO

Scalable asymmetric syntheses of two kallikrein-related protease 6 (KLK6) inhibitors are reported. The inhibitors are assembled by linking enantiomerically enriched fragments via amide bond formation, followed by conversion of a cyano group to an amidine. One fragment, an amine, was prepared using the Ellman auxiliary, and a lack of clarity in the literature regarding the stereochemical outcome of this reaction was solved via X-ray crystallographic analysis of two derivatives. Complexes of the inhibitors bound to human KLK6 were solved by X-ray crystallography, revealing the binding poses.

16.
RSC Adv ; 12(44): 28677, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36321863

RESUMO

[This corrects the article DOI: 10.1039/D2RA04670A.].

17.
Structure ; 28(1): 6-28, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31864810

RESUMO

Ribonucleoprotein complexes (RNPs) are central to all processes in the cell. One of the prerequisites to understand how RNPs work is to determine their high-resolution structures. With the recent revolution in cryoelectron microscopy this task has become easier for large RNP machines, such as ribosomes, spliceosomes, and polymerases. However, the transient and highly dynamic nature of many RNPs makes structure determination a challenging task. Thus, an integrative structural and molecular biology approach is required, tackling three key challenges: (1) identification of cognate RNA sequences; (2) collection of structural data by conducting X-ray crystallography, NMR, electron microscopy, small-angle scattering (SAS), and other experiments; and (3) the creation of structural models that integrates all experimental restraints. Given the breadth of expertise required, this review presents an overview of available methods and successful examples with the goal to provide readers with a selection of promising options for structure determination of RNPs.


Assuntos
Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Sequência de Bases , Microscopia Crioeletrônica , Cristalografia por Raios X , Modelos Moleculares , Ribonucleoproteínas/genética , Espalhamento a Baixo Ângulo
18.
Cell Rep ; 32(3): 107930, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32697992

RESUMO

RNA-binding proteins (RBPs) commonly feature multiple RNA-binding domains (RBDs), which provide these proteins with a modular architecture. Accumulating evidence supports that RBP architectural modularity and adaptability define the specificity of their interactions with RNA. However, how multiple RBDs recognize their cognate single-stranded RNA (ssRNA) sequences in concert remains poorly understood. Here, we use Upstream of N-Ras (Unr) as a model system to address this question. Although reported to contain five ssRNA-binding cold-shock domains (CSDs), we demonstrate that Unr includes an additional four CSDs that do not bind RNA (pseudo-RBDs) but are involved in mediating RNA tertiary structure specificity by reducing the conformational heterogeneity of Unr. Disrupting the interactions between canonical and non-canonical CSDs impacts RNA binding, Unr-mediated translation regulation, and the Unr-dependent RNA interactome. Taken together, our studies reveal a new paradigm in protein-RNA recognition, where interactions between RBDs and pseudo-RBDs select RNA tertiary structures, influence RNP assembly, and define target specificity.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Conformação de Ácido Nucleico , RNA/química , RNA/metabolismo , Sequência de Aminoácidos , Animais , Drosophila melanogaster , Biossíntese de Proteínas , Domínios Proteicos
19.
Nat Commun ; 11(1): 5621, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159082

RESUMO

Interactions between U2AF homology motifs (UHMs) and U2AF ligand motifs (ULMs) play a crucial role in early spliceosome assembly in eukaryotic gene regulation. UHM-ULM interactions mediate heterodimerization of the constitutive splicing factors U2AF65 and U2AF35 and between other splicing factors that regulate spliceosome assembly at the 3' splice site, where UHM domains of alternative splicing factors, such as SPF45 and PUF60, contribute to alternative splicing regulation. Here, we performed high-throughput screening using fluorescence polarization assays with hit validation by NMR and identified phenothiazines as general inhibitors of UHM-ULM interactions. NMR studies show that these compounds occupy the tryptophan binding pocket of UHM domains. Co-crystal structures of the inhibitors with the PUF60 UHM domain and medicinal chemistry provide structure-activity-relationships and reveal functional groups important for binding. These inhibitors inhibit early spliceosome assembly on pre-mRNA substrates in vitro. Our data show that spliceosome assembly can be inhibited by targeting UHM-ULM interactions by small molecules, thus extending the toolkit of splicing modulators for structural and biochemical studies of the spliceosome and splicing regulation.


Assuntos
Fenotiazinas/química , Fenotiazinas/farmacologia , Spliceossomos/efeitos dos fármacos , Spliceossomos/metabolismo , Processamento Alternativo , Humanos , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Precursores de RNA/genética , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Spliceossomos/genética , Fator de Processamento U2AF/química , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo
20.
Front Microbiol ; 10: 1148, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178848

RESUMO

Tripeptides with two consecutive prolines are the shortest and most frequent sequences causing ribosome stalling. The bacterial translation elongation factor P (EF-P) relieves this arrest, allowing protein biosynthesis to continue. A seven amino acids long loop between beta-strands ß3/ß4 is crucial for EF-P function and modified at its tip by lysylation of lysine or rhamnosylation of arginine. Phylogenetic analyses unveiled an invariant proline in the -2 position of the modification site in EF-Ps that utilize lysine modifications such as Escherichia coli. Bacteria with the arginine modification like Pseudomonas putida on the contrary have selected against it. Focusing on the EF-Ps from these two model organisms we demonstrate the importance of the ß3/ß4 loop composition for functionalization by chemically distinct modifications. Ultimately, we show that only two amino acid changes in E. coli EF-P are needed for switching the modification strategy from lysylation to rhamnosylation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa