Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Dent Sci ; 19(2): 919-928, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38618085

RESUMO

Background/purpose: The chemo-mechanical caries-removal technique is known to offer advantages of selective dentin caries treatment while leaving healthy dental tissues intact. However, current sodium hypochlorite based reagents usually excessively damage dentin collagen. Therefore, the purpose of this study was to develop a novel chemo-mechanical caries-removal system to preserve the collagen network for subsequent prosthetic restorations. Materials and methods: The calfskin-derived collagen was chosen as a model system to investigate the dissolution behavior of collagen under different operating conditions of chemical-ultrasonic treatment systems. The molecular weight, triple-helix structure, the morphology, and functional group of collagen after treatment were investigated. Results: Various concentrations of sodium hypochlorite or zinc chloride together with ultrasonic machinery were chosen to investigate. The outcomes of circular dichroism (CD) spectra demonstrated stability of the triple-helix structure after treatment of a zinc chloride solution. In addition, two apparent bands at molecular weights (MWs) of 130 and 121 kDa evidenced the stability of collagen network. The positive 222 nm and 195 nm negative CD absorption band indicated the existence of a triple-helix structure for type I collagen. The preservation of the morphology and functional group of the collagen network on the etched dentin surface were investigated by in vitro dentin decalcification model. Conclusion: Unlike NaOCl, the 5 wt% zinc chloride solution combined with ultra-sonication showed dissolution rather than denature as well as degradation of the dentin collagen network. Additional in vivo evaluations are needed to verify its usefulness in clinical applications.

2.
Polymers (Basel) ; 14(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36015625

RESUMO

Polypropylene (PP), a promising engineering thermoplastic, possesses the advantages of light weight, chemical resistance, and flexible processability, yet preserving insulative properties. For the rising demand for cost-effective electronic devices and system hardware protections, these applications require the proper conductive properties of PP, which can be easily modified. This study investigates the thermal and electrical properties of isotactic polypropylene/copper nanowires (i-PP/CuNWs). The CuNWs were harvested by chemical reduction of CuCl2 using a reducing agent of glucose, capping agent of hexadecylamine (HDA), and surfactant of PEG-7 glyceryl cocoate. Their morphology, light absorbance, and solution homogeneity were investigated by SEM, UV-visible spectrophotometry, and optical microscopy. The averaged diameters and the length of the CuNWs were 66.4 ± 16.1 nm and 32.4 ± 11.8 µm, respectively. The estimated aspect ratio (L/D, length-to-diameter) was 488 ± 215 which can be recognized as 1-D nanomaterials. Conductive i-PP/CuNWs composites were prepared by solution blending using p-xylene, then melt blending. The thermal analysis and morphology of CuNWs were characterized by DSC, polarized optical microscopy (POM), and SEM, respectively. The melting temperature decreased, but the crystallization temperature increasing of i-PP/CuNWs composites were observed when increasing the content of CuNWs by the melt blending process. The WAXD data reveal the coexistence of Cu2O and Cu in melt-blended i-PP/CuNWs composites. The fit of the electrical volume resistivity (ρ) with the modified power law equation: ρ = ρo (V - Vc)-t based on the percolation theory was used to find the percolation concentration. A low percolation threshold value of 0.237 vol% and high critical exponent t of 2.96 for i-PP/CuNWs composites were obtained. The volume resistivity for i-PP/CuNWs composite was 1.57 × 107 Ω-cm at 1 vol% of CuNWs as a potential candidate for future conductive materials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa