Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
1.
Pharmacol Rev ; 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39406505

RESUMO

Arrhythmia refers to irregularities in the rate and rhythm of the heart, with symptoms spanning from mild palpitations to life-threatening arrhythmias and sudden cardiac death (SCD). The complex molecular nature of arrhythmias complicates the selection of appropriate treatment. Current therapies involve the use of antiarrhythmic drugs (class I-IV) with limited efficacy and dangerous side effects and implantable pacemakers and cardioverter-defibrillators with hardware-related complications and inappropriate shocks. The number of novel antiarrhythmic drug in the development pipeline has decreased substantially during the last decade and underscores uncertainties regarding future developments in this field. Consequently, arrhythmia treatment poses significant challenges, prompting the need for alternative approaches. Remarkably, innovative drug discovery and development technologies show promise in helping advance antiarrhythmic therapies. Here, we review unique characteristics and the transformative potential of emerging technologies that offer unprecedented opportunities for transitioning from traditional antiarrhythmics to next-generation therapies. We assess stem cell technology, emphasizing the utility of innovative cell profiling using multi-omics, high-throughput screening, and advanced computational modeling in developing treatments tailored precisely to individual genetic and physiological profiles. We offer insights into gene therapy, peptide and peptibody approaches for drug delivery. We finally discuss potential strengths and weaknesses of such techniques in reducing adverse effects and enhancing overall treatment outcomes, leading to more effective, specific, and safer therapies. Altogether, this comprehensive overview introduces innovative avenues for personalized rhythm therapy, with particular emphasis on drug discovery, aiming to advance the arrhythmia treatment landscape and the prevention of SCD. Significance Statement Arrhythmias and sudden cardiac death account for 15-20% of deaths worldwide. However, current antiarrhythmic therapies are ineffective and with dangerous side effects. Here, we review the field of arrhythmia treatment underscoring the slow progress in advancing the cardiac rhythm therapy pipeline and the uncertainties regarding evolution of this field. We provide information on how emerging technological and experimental tools can help accelerate progress and address the limitations of antiarrhythmic drug discovery.

2.
Circ Res ; 134(8): e52-e71, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38497220

RESUMO

BACKGROUND: Andersen-Tawil syndrome type 1 is a rare heritable disease caused by mutations in the gene coding the strong inwardly rectifying K+ channel Kir2.1. The extracellular Cys (cysteine)122-to-Cys154 disulfide bond in the channel structure is crucial for proper folding but has not been associated with correct channel function at the membrane. We evaluated whether a human mutation at the Cys122-to-Cys154 disulfide bridge leads to Kir2.1 channel dysfunction and arrhythmias by reorganizing the overall Kir2.1 channel structure and destabilizing its open state. METHODS: We identified a Kir2.1 loss-of-function mutation (c.366 A>T; p.Cys122Tyr) in an ATS1 family. To investigate its pathophysiological implications, we generated an AAV9-mediated cardiac-specific mouse model expressing the Kir2.1C122Y variant. We employed a multidisciplinary approach, integrating patch clamping and intracardiac stimulation, molecular biology techniques, molecular dynamics, and bioluminescence resonance energy transfer experiments. RESULTS: Kir2.1C122Y mice recapitulated the ECG features of ATS1 independently of sex, including corrected QT prolongation, conduction defects, and increased arrhythmia susceptibility. Isolated Kir2.1C122Y cardiomyocytes showed significantly reduced inwardly rectifier K+ (IK1) and inward Na+ (INa) current densities independently of normal trafficking. Molecular dynamics predicted that the C122Y mutation provoked a conformational change over the 2000-ns simulation, characterized by a greater loss of hydrogen bonds between Kir2.1 and phosphatidylinositol 4,5-bisphosphate than wild type (WT). Therefore, the phosphatidylinositol 4,5-bisphosphate-binding pocket was destabilized, resulting in a lower conductance state compared with WT. Accordingly, on inside-out patch clamping, the C122Y mutation significantly blunted Kir2.1 sensitivity to increasing phosphatidylinositol 4,5-bisphosphate concentrations. In addition, the Kir2.1C122Y mutation resulted in channelosome degradation, demonstrating temporal instability of both Kir2.1 and NaV1.5 proteins. CONCLUSIONS: The extracellular Cys122-to-Cys154 disulfide bond in the tridimensional Kir2.1 channel structure is essential for the channel function. We demonstrate that breaking disulfide bonds in the extracellular domain disrupts phosphatidylinositol 4,5-bisphosphate-dependent regulation, leading to channel dysfunction and defects in Kir2.1 energetic stability. The mutation also alters functional expression of the NaV1.5 channel and ultimately leads to conduction disturbances and life-threatening arrhythmia characteristic of Andersen-Tawil syndrome type 1.


Assuntos
Síndrome de Andersen , Humanos , Camundongos , Animais , Síndrome de Andersen/genética , Síndrome de Andersen/metabolismo , Mutação , Miócitos Cardíacos/metabolismo , Doença do Sistema de Condução Cardíaco , Dissulfetos , Fosfatidilinositóis/metabolismo
3.
Europace ; 26(9)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39077825

RESUMO

AIMS: The concept of "atrial cardiomyopathy" (AtCM) had been percolating through the literature since its first mention in 1972. Since then, publications using the term were sporadic until the decision was made to convene an expert working group with representation from four multinational arrhythmia organizations to prepare a consensus document on atrial cardiomyopathy in 2016 (EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: definition, characterization, and clinical implication). Subsequently, publications on AtCM have increased progressively. METHODS AND RESULTS: The present consensus document elaborates the 2016 AtCM document further to implement a simple AtCM staging system (AtCM stages 1-3) by integrating biomarkers, atrial geometry, and electrophysiological changes. However, the proposed AtCM staging needs clinical validation. Importantly, it is clearly stated that the presence of AtCM might serve as a substrate for the development of atrial fibrillation (AF) and AF may accelerates AtCM substantially, but AtCM per se needs to be viewed as a separate entity. CONCLUSION: Thus, the present document serves as a clinical consensus statement of the European Heart Rhythm Association (EHRA) of the ESC, the Heart Rhythm Society (HRS), the Asian Pacific Heart Rhythm Society (APHRS), and the Latin American Heart Rhythm Society (LAHRS) to contribute to the evolution of the AtCM concept.


Assuntos
Fibrilação Atrial , Cardiomiopatias , Consenso , Humanos , Potenciais de Ação , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/epidemiologia , Cardiomiopatias/diagnóstico , Cardiomiopatias/fisiopatologia , Cardiomiopatias/epidemiologia , Átrios do Coração/fisiopatologia , Frequência Cardíaca , Prognóstico , Terminologia como Assunto
4.
Int J Mol Sci ; 25(16)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39201339

RESUMO

In polymicrobial sepsis, the extracellular histones, mainly released from activated neutrophils, significantly contribute to cardiac dysfunction (septic cardiomyopathy), as demonstrated in our previous studies using Echo-Doppler measurements. This study aims to elucidate the roles of extracellular histones and their interactions with Toll-like receptors (TLRs) in cardiac dysfunction. Through ex vivo assessments of ECG, left ventricle (LV) function parameters, and in vivo Echo-Doppler studies in mice perfused with extracellular histones, we aim to provide comprehensive insights into the mechanisms underlying sepsis-induced cardiac dysfunction. Langendorff-perfused hearts from both wild-type and TLR2, TLR3, or TLR4 knockout (KO) mice were examined. Paced mouse hearts were perfused with histones to assess contractility and relaxation. Echo-Doppler studies evaluated cardiac dysfunction after intravenous histone injection. Histone perfusion caused defects in contractility and relaxation, with TLR2 and TLR3 KO mice being partially protected. Specifically, TLR2 KO mice exhibited the greatest reduction in Echo-Doppler abnormalities, while TLR4 KO exacerbated cardiac dysfunction. Among individual histones, H1 induced the most pronounced abnormalities in cardiac function, apoptosis of cardiomyocytes, and LDH release. Our data highlight significant interactions between histones and TLRs, providing insights into histones especially H1 as potential therapeutic targets for septic cardiomyopathy. Further studies are needed to explore specific histone-TLR interactions and their mechanisms.


Assuntos
Histonas , Camundongos Knockout , Animais , Histonas/metabolismo , Camundongos , Receptores Toll-Like/metabolismo , Masculino , Sepse/metabolismo , Sepse/complicações , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Coração/fisiopatologia
5.
Europace ; 24(11): 1788-1799, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-35851611

RESUMO

AIMS: To determine the spectral dynamics of early spontaneous polymorphic ventricular tachycardia and ventricular fibrillation (PVT/VF) in humans. METHODS AND RESULTS: Fifty-eight self-terminated and 173 shock-terminated episodes of spontaneously initiated PVT/VF recorded by Medtronic implanted cardiac defibrillators (ICDs) in 87 patients with various cardiac pathologies were analyzed by short fast Fourier transform of shifting segments to determine the dynamics of dominant frequency (DF) and regularity index (RI). The progression in the intensity of DF and RI accumulations further quantified the time course of spectral characteristics of the episodes. Episodes of self-terminated PVT/VF lasted 8.6 s [95% confidence interval (CI): 8.1-9.1] and shock-terminated lasted 13.9 s (13.6-14.3) (P < 0.001). Recordings from patients with primarily electrical pathologies displayed higher DF and RI values than those from patients with primarily structural pathologies (P < 0.05) independently of ventricular function or antiarrhythmic drug therapy. Regardless of the underlying pathology, the average DF and RI intensities were lower in self-terminated than shock-terminated episodes [DF: 3.67 (4.04-4.58) vs. 4.32 (3.46-3.93) Hz, P < 0.001; RI: 0.53 (0.48-0.56) vs. 0.63 (0.60-0.65), P < 0.001]. In a multivariate analysis controlled by the type of pathology and clinical variables, regularity remained an independent predictor of self-termination [hazard ratio: 0.954 (0.928-0.980)]. Receiver operating characteristic (ROC) curve analysis of DF and RI intensities demonstrated increased predictability for self-termination in time with 95% CI above the 0.5 cut-off limit at about t = 8.6 s and t = 6.95 s, respectively. CONCLUSION: Consistent with the notion that fast organized sources maintain PVT/VF in humans, reduction of frequency and regularity correlates with early self-termination. Our findings might help generate ICD methods aiming to reduce inappropriate shock deliveries.


Assuntos
Desfibriladores Implantáveis , Taquicardia Ventricular , Humanos , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/terapia , Arritmias Cardíacas , Fibrilação Ventricular/diagnóstico , Fibrilação Ventricular/terapia
6.
Mol Cell Proteomics ; 19(9): 1436-1449, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32541000

RESUMO

Kir2.1, a strong inward rectifier potassium channel encoded by the KCNJ2 gene, is a key regulator of the resting membrane potential of the cardiomyocyte and plays an important role in controlling ventricular excitation and action potential duration in the human heart. Mutations in KCNJ2 result in inheritable cardiac diseases in humans, e.g. the type-1 Andersen-Tawil syndrome (ATS1). Understanding the molecular mechanisms that govern the regulation of inward rectifier potassium currents by Kir2.1 in both normal and disease contexts should help uncover novel targets for therapeutic intervention in ATS1 and other Kir2.1-associated channelopathies. The information available to date on protein-protein interactions involving Kir2.1 channels remains limited. Additional efforts are necessary to provide a comprehensive map of the Kir2.1 interactome. Here we describe the generation of a comprehensive map of the Kir2.1 interactome using the proximity-labeling approach BioID. Most of the 218 high-confidence Kir2.1 channel interactions we identified are novel and encompass various molecular mechanisms of Kir2.1 function, ranging from intracellular trafficking to cross-talk with the insulin-like growth factor receptor signaling pathway, as well as lysosomal degradation. Our map also explores the variations in the interactome profiles of Kir2.1WTversus Kir2.1Δ314-315, a trafficking deficient ATS1 mutant, thus uncovering molecular mechanisms whose malfunctions may underlie ATS1 disease. Finally, using patch-clamp analysis, we validate the functional relevance of PKP4, one of our top BioID interactors, to the modulation of Kir2.1-controlled inward rectifier potassium currents. Our results validate the power of our BioID approach in identifying functionally relevant Kir2.1 interactors and underline the value of our Kir2.1 interactome as a repository for numerous novel biological hypotheses on Kir2.1 and Kir2.1-associated diseases.


Assuntos
Síndrome de Andersen/metabolismo , Miócitos Cardíacos/metabolismo , Placofilinas/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potássio/metabolismo , Mapas de Interação de Proteínas , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Síndrome de Andersen/genética , Síndrome de Andersen/fisiopatologia , Cromatografia Líquida , Desmossomos/efeitos dos fármacos , Desmossomos/metabolismo , Células HEK293 , Humanos , Lisossomos/metabolismo , Chaperonas Moleculares/metabolismo , Mutação , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/genética , Mapas de Interação de Proteínas/genética , Mapas de Interação de Proteínas/fisiologia , Transporte Proteico/genética , Transporte Proteico/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Somatomedinas/metabolismo , Espectrometria de Massas em Tandem , Utrofina/metabolismo
7.
Am J Hum Genet ; 102(1): 103-115, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29290336

RESUMO

Atrial fibrillation (AF) is a common cardiac arrhythmia and a major risk factor for stroke, heart failure, and premature death. The pathogenesis of AF remains poorly understood, which contributes to the current lack of highly effective treatments. To understand the genetic variation and biology underlying AF, we undertook a genome-wide association study (GWAS) of 6,337 AF individuals and 61,607 AF-free individuals from Norway, including replication in an additional 30,679 AF individuals and 278,895 AF-free individuals. Through genotyping and dense imputation mapping from whole-genome sequencing, we tested almost nine million genetic variants across the genome and identified seven risk loci, including two novel loci. One novel locus (lead single-nucleotide variant [SNV] rs12614435; p = 6.76 × 10-18) comprised intronic and several highly correlated missense variants situated in the I-, A-, and M-bands of titin, which is the largest protein in humans and responsible for the passive elasticity of heart and skeletal muscle. The other novel locus (lead SNV rs56202902; p = 1.54 × 10-11) covered a large, gene-dense chromosome 1 region that has previously been linked to cardiac conduction. Pathway and functional enrichment analyses suggested that many AF-associated genetic variants act through a mechanism of impaired muscle cell differentiation and tissue formation during fetal heart development.


Assuntos
Fibrilação Atrial/genética , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Coração/embriologia , Sequências Reguladoras de Ácido Nucleico/genética , Humanos , Padrões de Herança/genética , Herança Multifatorial/genética , Especificidade de Órgãos/genética , Mapeamento Físico do Cromossomo , Locos de Características Quantitativas/genética , Reprodutibilidade dos Testes , Fatores de Risco
8.
Clin Endocrinol (Oxf) ; 94(6): 1043-1053, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33502018

RESUMO

OBJECTIVES: LMNA variants have been previously associated with cardiac abnormalities independent of lipodystrophy. We aimed to assess cardiac impact of familial partial lipodystrophy (FPLD) to understand the role of laminopathy in cardiac manifestations. STUDY DESIGN: Retrospective cohort study. METHODS: Clinical data from 122 patients (age range: 13-77, 101 females) with FPLD were analysed. Mature human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from a patient with an LMNA variant were studied as proof-of-concept for future studies. RESULTS: Subjects with LMNA variants had a higher prevalence of overall cardiac events than others. The likelihood of having an arrhythmia was significantly higher in patients with LMNA variants (OR: 3.77, 95% CI: 1.45-9.83). These patients were at higher risk for atrial fibrillation or flutter (OR: 5.78, 95% CI: 1.04-32.16). The time to the first arrhythmia was significantly shorter in the LMNA group, with a higher HR of 3.52 (95% CI: 1.34-9.27). Non-codon 482 LMNA variants were more likely to be associated with cardiac events (vs. 482 LMNA: OR: 4.74, 95% CI: 1.41-15.98 for arrhythmia; OR: 17.67, 95% CI: 2.45-127.68 for atrial fibrillation or flutter; OR: 5.71, 95% CI: 1.37-23.76 for conduction disease). LMNA mutant hiPSC-CMs showed a higher frequency of spontaneous activity and shorter action potential duration. Functional syncytia of hiPSC-CMs displayed several rhythm alterations such as early afterdepolarizations, spontaneous quiescence and spontaneous tachyarrhythmia, and significantly slower recovery in chronotropic changes induced by isoproterenol exposure. CONCLUSIONS: Our results highlight the need for vigilant cardiac monitoring in FPLD, especially in patients with LMNA variants who have an increased risk of developing cardiac arrhythmias. In addition, hiPSC-CMs can be studied to understand the basic mechanisms for the arrhythmias in patients with lipodystrophy to understand the impact of specific mutations.


Assuntos
Células-Tronco Pluripotentes Induzidas , Lipodistrofia Parcial Familiar , Lipodistrofia , Adolescente , Adulto , Idoso , Feminino , Humanos , Lamina Tipo A/genética , Lipodistrofia Parcial Familiar/genética , Pessoa de Meia-Idade , Mutação , Fenótipo , Estudos Retrospectivos , Adulto Jovem
9.
Circ Res ; 125(6): 609-627, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31366278

RESUMO

RATIONALE: Costly proprietary panoramic multielectrode (64-256) acquisition systems are being increasingly used together with conventional electroanatomical mapping systems for persistent atrial fibrillation (PersAF) ablation. However, such approaches target alleged drivers (rotational/focal) regardless of their activation frequency dynamics. OBJECTIVES: To test the hypothesis that stable regions of higher than surrounding instantaneous frequency modulation (iFM) drive PersAF and determine whether rotational activity is specific for such regions. METHODS AND RESULTS: First, novel single-signal algorithms based on instantaneous amplitude modulation (iAM) and iFM to detect rotational-footprints without panoramic multielectrode acquisition systems were tested in 125 optical movies from 5 ex vivo Langendorff-perfused PersAF sheep hearts (sensitivity/specificity, 92.6/97.5%; accuracy, 2.5-mm) and in computer simulations. Then, 16 pigs underwent high-rate atrial pacing to develop PersAF. After a median (interquartile range [IQR]) of 4.4 (IQR, 2.5-9.9) months of high-rate atrial pacing followed by 4.1 (IQR, 2.7-5.4) months of self-sustained PersAF, pigs underwent in vivo high-density electroanatomical atrial mapping (4920 [IQR, 4435-5855] 8-second unipolar signals per map). The first 4 out of 16 pigs were used to adapt ex vivo optical proccessing of iFM/iAM to in vivo electrical signals. In the remaining 12 out of 16 pigs, regions of higher than surrounding average iFM were considered leading-drivers. Two leading-driver + rotational-footprint maps were generated 2.6 (IQR, 2.4-2.9) hours apart to test leading-driver spatiotemporal stability and guide ablation. Leading-driver regions (2.5 [IQR, 2.0-4.0] regions/map) exactly colocalized (95.7%) in the 2 maps, and their ablation terminated PersAF in 92.3% of procedures (radiofrequency until termination, 16.9 [IQR, 9.2-35.8] minutes; until nonsustainability, 20.4 [IQR, 12.8-44.0] minutes). Rotational-footprints were found at every leading-driver region, albeit most (76.8% [IQR, 70.5%-83.6%]) were located outside. Finally, the translational ability of this approach was tested in 3 PersAF redo patients. CONCLUSIONS: Both rotational-footprints and spatiotemporally stable leading-driver regions can be located using iFM/iAM algorithms without panoramic multielectrode acquisition systems. In pigs, ablation of leading-driver regions usually terminates PersAF and prevents its sustainability. Rotational activations are sensitive but not specific to such regions. Single-signal iFM/iAM algorithms could be integrated into conventional electroanatomical mapping systems to improve driver detection accuracy and reduce the cost of patient-tailored/mechanistic approaches.


Assuntos
Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/cirurgia , Mapeamento Potencial de Superfície Corporal/métodos , Ablação por Cateter/métodos , Frequência Cardíaca/fisiologia , Imageamento Tridimensional/métodos , Potenciais de Ação/fisiologia , Adulto , Idoso , Animais , Fibrilação Atrial/diagnóstico por imagem , Feminino , Humanos , Preparação de Coração Isolado/métodos , Masculino , Pessoa de Meia-Idade , Ovinos , Suínos
10.
Circ Res ; 125(10): e75-e92, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31533542

RESUMO

It is now well recognized that many lifesaving oncology drugs may adversely affect the heart and cardiovascular system, including causing irreversible cardiac injury that can result in reduced quality of life. These effects, which may manifest in the short term or long term, are mechanistically not well understood. Research is hampered by the reliance on whole-animal models of cardiotoxicity that may fail to reflect the fundamental biology or cardiotoxic responses of the human myocardium. The emergence of human induced pluripotent stem cell-derived cardiomyocytes as an in vitro research tool holds great promise for understanding drug-induced cardiotoxicity of oncological drugs that may manifest as contractile and electrophysiological dysfunction, as well as structural abnormalities, making it possible to deliver novel drugs free from cardiac liabilities and guide personalized therapy. This article briefly reviews the challenges of cardio-oncology, the strengths and limitations of using human induced pluripotent stem cell-derived cardiomyocytes to represent clinical findings in the nonclinical research space, and future directions for their further use.


Assuntos
American Heart Association , Antineoplásicos/toxicidade , Cardiotoxicidade/genética , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Animais , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Estados Unidos/epidemiologia
11.
Pacing Clin Electrophysiol ; 44(2): 341-359, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33283883

RESUMO

Anatomical-based approaches, targeting either pulmonary vein isolation (PVI) or additional extra PV regions, represent the most commonly used ablation treatments in symptomatic patients with atrial fibrillation (AF) recurrences despite antiarrhythmic drug therapy. PVI remains the main anatomical target during catheter-based AF ablation, with the aid of new technological advances as contact force monitoring to increase safety and effective radiofrequency (RF) lesions. Nowadays, cryoballoon ablation has also achieved the same level of scientific evidence in patients with paroxysmal AF undergoing PVI. In parallel, electrical isolation of extra PV targets has progressively increased, which is associated with a steady increase in complex cases undergoing ablation. Several atrial regions as the left atrial posterior wall, the vein of Marshall, the left atrial appendage, or the coronary sinus have been described in different series as locations potentially involved in AF initiation and maintenance. Targeting these regions may be challenging using conventional point-by-point RF delivery, which has opened new opportunities for coadjuvant alternatives as balloon ablation or selective ethanol injection. Although more extensive ablation may increase intraprocedural AF termination and freedom from arrhythmias during the follow-up, some of the targets to achieve such outcomes are not exempt of potential severe complications. Here, we review and discuss current anatomical approaches and the main ablation technologies to target atrial regions associated with AF initiation and maintenance.


Assuntos
Fibrilação Atrial/cirurgia , Ablação por Cateter/métodos , Veias Pulmonares/cirurgia , Procedimentos Cirúrgicos Cardíacos/métodos , Humanos , Resultado do Tratamento
12.
Pharmacol Rev ; 70(3): 505-525, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29921647

RESUMO

Atrial fibrillation is a highly prevalent cardiac arrhythmia and the most important cause of embolic stroke. Although genetic studies have identified an increasing assembly of AF-related genes, the impact of these genetic discoveries is yet to be realized. In addition, despite more than a century of research and speculation, the molecular and cellular mechanisms underlying AF have not been established, and therapy for AF, particularly persistent AF, remains suboptimal. Current antiarrhythmic drugs are associated with a significant rate of adverse events, particularly proarrhythmia, which may explain why many highly symptomatic AF patients are not receiving any rhythm control therapy. This review focuses on recent advances in AF research, including its epidemiology, genetics, and pathophysiological mechanisms. We then discuss the status of antiarrhythmic drug therapy for AF today, reviewing molecular mechanisms, and the possible clinical use of some of the new atrial-selective antifibrillatory agents, as well as drugs that target atrial remodeling, inflammation and fibrosis, which are being tested as upstream therapies to prevent AF perpetuation. Altogether, the objective is to highlight the magnitude and endemic dimension of AF, which requires a significant effort to develop new and effective antiarrhythmic drugs, but also improve AF prevention and treatment of risk factors that are associated with AF complications.


Assuntos
Antiarrítmicos/uso terapêutico , Fibrilação Atrial/terapia , Animais , Antiarrítmicos/farmacologia , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/genética , Fibrilação Atrial/fisiopatologia , Pressão Positiva Contínua nas Vias Aéreas , Desenvolvimento de Medicamentos , Humanos , Síndromes da Apneia do Sono/complicações , Síndromes da Apneia do Sono/terapia
13.
Circ Res ; 122(11): 1501-1516, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29514831

RESUMO

RATIONALE: In cardiomyocytes, NaV1.5 and Kir2.1 channels interact dynamically as part of membrane bound macromolecular complexes. OBJECTIVE: The objective of this study was to test whether NaV1.5 and Kir2.1 preassemble during early forward trafficking and travel together to common membrane microdomains. METHODS AND RESULTS: In patch-clamp experiments, coexpression of trafficking-deficient mutants Kir2.1Δ314-315 or Kir2.1R44A/R46A with wild-type (WT) NaV1.5WT in heterologous cells reduced inward sodium current compared with NaV1.5WT alone or coexpressed with Kir2.1WT. In cell surface biotinylation experiments, expression of Kir2.1Δ314-315 reduced NaV1.5 channel surface expression. Glycosylation analysis suggested that NaV1.5WT and Kir2.1WT channels associate early in their biosynthetic pathway, and fluorescence recovery after photobleaching experiments demonstrated that coexpression with Kir2.1 increased cytoplasmic mobility of NaV1.5WT, and vice versa, whereas coexpression with Kir2.1Δ314-315 reduced mobility of both channels. Viral gene transfer of Kir2.1Δ314-315 in adult rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes reduced inward rectifier potassium current and inward sodium current, maximum diastolic potential and action potential depolarization rate, and increased action potential duration. On immunostaining, the AP1 (adaptor protein complex 1) colocalized with NaV1.5WT and Kir2.1WT within areas corresponding to t-tubules and intercalated discs. Like Kir2.1WT, NaV1.5WT coimmunoprecipitated with AP1. Site-directed mutagenesis revealed that NaV1.5WT channels interact with AP1 through the NaV1.5Y1810 residue, suggesting that, like for Kir2.1WT, AP1 can mark NaV1.5 channels for incorporation into clathrin-coated vesicles at the trans-Golgi. Silencing the AP1 ϒ-adaptin subunit in human induced pluripotent stem cell-derived cardiomyocytes reduced inward rectifier potassium current, inward sodium current, and maximum diastolic potential and impaired rate-dependent action potential duration adaptation. CONCLUSIONS: The NaV1.5-Kir2.1 macromolecular complex pre-assembles early in the forward trafficking pathway. Therefore, disruption of Kir2.1 trafficking in cardiomyocytes affects trafficking of NaV1.5, which may have important implications in the mechanisms of arrhythmias in inheritable cardiac diseases.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Sarcolema/metabolismo , Potenciais de Ação , Animais , Corantes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Potenciais da Membrana/fisiologia , Miócitos Cardíacos/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canais de Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Canais de Sódio Disparados por Voltagem/metabolismo
14.
Europace ; 22(5): 704-715, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31840163

RESUMO

AIMS: Atrial electrical remodelling (AER) is a transitional period associated with the progression and long-term maintenance of atrial fibrillation (AF). We aimed to study the progression of AER in individual patients with implantable devices and AF episodes. METHODS AND RESULTS: Observational multicentre study (51 centres) including 4618 patients with implantable cardioverter-defibrillator +/-resynchronization therapy (ICD/CRT-D) and 352 patients (2 centres) with pacemakers (median follow-up: 3.4 years). Atrial activation rate (AAR) was quantified as the frequency of the dominant peak in the signal spectrum of AF episodes with atrial bipolar electrograms. Patients with complete progression of AER, from paroxysmal AF episodes to electrically remodelled persistent AF, were used to depict patient-specific AER slopes. A total of 34 712 AF tracings from 830 patients (87 with pacemakers) were suitable for the study. Complete progression of AER was documented in 216 patients (16 with pacemakers). Patients with persistent AF after completion of AER showed ∼30% faster AAR than patients with paroxysmal AF. The slope of AAR changes during AF progression revealed patient-specific patterns that correlated with the time-to-completion of AER (R2 = 0.85). Pacemaker patients were older than patients with ICD/CRT-Ds (78.3 vs. 67.2 year olds, respectively, P < 0.001) and had a shorter median time-to-completion of AER (24.9 vs. 93.5 days, respectively, P = 0.016). Remote transmissions in patients with ICD/CRT-D devices enabled the estimation of the time-to-completion of AER using the predicted slope of AAR changes from initiation to completion of electrical remodelling (R2 = 0.45). CONCLUSION: The AF progression shows patient-specific patterns of AER, which can be estimated using available remote-monitoring technology.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Desfibriladores Implantáveis , Marca-Passo Artificial , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/terapia , Pré-Escolar , Humanos
15.
Proc Natl Acad Sci U S A ; 114(3): E416-E425, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28049825

RESUMO

Long QT syndrome (LQTS) exhibits great phenotype variability among family members carrying the same mutation, which can be partially attributed to genetic factors. We functionally analyzed the KCNH2 (encoding for Kv11.1 or hERG channels) and TBX20 (encoding for the transcription factor Tbx20) variants found by next-generation sequencing in two siblings with LQTS in a Spanish family of African ancestry. Affected relatives harbor a heterozygous mutation in KCNH2 that encodes for p.T152HfsX180 Kv11.1 (hERG). This peptide, by itself, failed to generate any current when transfected into Chinese hamster ovary (CHO) cells but, surprisingly, exerted "chaperone-like" effects over native hERG channels in both CHO cells and mouse atrial-derived HL-1 cells. Therefore, heterozygous transfection of native (WT) and p.T152HfsX180 hERG channels generated a current that was indistinguishable from that generated by WT channels alone. Some affected relatives also harbor the p.R311C mutation in Tbx20. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), Tbx20 enhanced human KCNH2 gene expression and hERG currents (IhERG) and shortened action-potential duration (APD). However, Tbx20 did not modify the expression or activity of any other channel involved in ventricular repolarization. Conversely, p.R311C Tbx20 did not increase KCNH2 expression in hiPSC-CMs, which led to decreased IhERG and increased APD. Our results suggest that Tbx20 controls the expression of hERG channels responsible for the rapid component of the delayed rectifier current. On the contrary, p.R311C Tbx20 specifically disables the Tbx20 protranscriptional activity over KCNH2 Therefore, TBX20 can be considered a KCNH2-modifying gene.


Assuntos
Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Potenciais de Ação/genética , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Células CHO , Linhagem Celular , Cricetulus , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Masculino , Camundongos , Mutação/genética , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley
16.
J Physiol ; 597(17): 4533-4564, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31278749

RESUMO

KEY POINTS: Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) capture patient-specific genotype-phenotype relationships, as well as cell-to-cell variability of cardiac electrical activity Computational modelling and simulation provide a high throughput approach to reconcile multiple datasets describing physiological variability, and also identify vulnerable parameter regimes We have developed a whole-cell model of iPSC-CMs, composed of single exponential voltage-dependent gating variable rate constants, parameterized to fit experimental iPSC-CM outputs We have utilized experimental data across multiple laboratories to model experimental variability and investigate subcellular phenotypic mechanisms in iPSC-CMs This framework links molecular mechanisms to cellular-level outputs by revealing unique subsets of model parameters linked to known iPSC-CM phenotypes ABSTRACT: There is a profound need to develop a strategy for predicting patient-to-patient vulnerability in the emergence of cardiac arrhythmia. A promising in vitro method to address patient-specific proclivity to cardiac disease utilizes induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). A major strength of this approach is that iPSC-CMs contain donor genetic information and therefore capture patient-specific genotype-phenotype relationships. A cited detriment of iPSC-CMs is the cell-to-cell variability observed in electrical activity. We postulated, however, that cell-to-cell variability may constitute a strength when appropriately utilized in a computational framework to build cell populations that can be employed to identify phenotypic mechanisms and pinpoint key sensitive parameters. Thus, we have exploited variation in experimental data across multiple laboratories to develop a computational framework for investigating subcellular phenotypic mechanisms. We have developed a whole-cell model of iPSC-CMs composed of simple model components comprising ion channel models with single exponential voltage-dependent gating variable rate constants, parameterized to fit experimental iPSC-CM data for all major ionic currents. By optimizing ionic current model parameters to multiple experimental datasets, we incorporate experimentally-observed variability in the ionic currents. The resulting population of cellular models predicts robust inter-subject variability in iPSC-CMs. This approach links molecular mechanisms to known cellular-level iPSC-CM phenotypes, as shown by comparing immature and mature subpopulations of models to analyse the contributing factors underlying each phenotype. In the future, the presented models can be readily expanded to include genetic mutations and pharmacological interventions for studying the mechanisms of rare events, such as arrhythmia triggers.


Assuntos
Arritmias Cardíacas/fisiopatologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Potenciais de Ação/fisiologia , Doença do Sistema de Condução Cardíaco/fisiopatologia , Simulação por Computador , Humanos , Armazenamento e Recuperação da Informação , Fenótipo
17.
FASEB J ; 32(4): 1778-1793, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29162702

RESUMO

The acetylcholine-activated inward rectifier potassium current ( IKACh) is constitutively active in persistent atrial fibrillation (AF). We tested the hypothesis that the blocking of IKACh with the small molecule chloroquine terminates persistent AF. We used a sheep model of tachypacing-induced, persistent AF, molecular modeling, electrophysiology, and structural biology approaches. The 50% inhibition/inhibitory concentration of IKACh block with chloroquine, measured by patch clamp, was 1 µM. In optical mapping of sheep hearts with persistent AF, 1 µM chloroquine restored sinus rhythm. Molecular modeling suggested that chloroquine blocked the passage of a hydrated potassium ion through the intracellular domain of Kir3.1 (a molecular correlate of IKACh) by interacting with residues D260 and F255, in proximity to I228, Q227, and L299. 1H 15N heteronuclear single-quantum correlation of purified Kir3.1 intracellular domain confirmed the modeling results. F255, I228, Q227, and L299 underwent significant chemical-shift perturbations upon drug binding. We then crystallized and solved a 2.5 Å X-ray structure of Kir3.1 with F255A mutation. Modeling of chloroquine binding to the mutant channel suggested that the drug's binding to the pore becomes off centered, reducing its ability to block a hydrated potassium ion. Patch clamp validated the structural and modeling data, where the F255A and D260A mutations significantly reduced IKACh block by chloroquine. With the use of numerical and structural biology approaches, we elucidated the details of how a small molecule could block an ion channel and exert antiarrhythmic effects. Chloroquine binds the IKACh channel at a site formed by specific amino acids in the ion-permeation pathway, leading to decreased IKACh and the subsequent termination of AF.-Takemoto, Y., Slough, D. P., Meinke, G., Katnik, C., Graziano, Z. A., Chidipi, B., Reiser, M., Alhadidy, M. M., Ramirez, R., Salvador-Montañés, O., Ennis, S., Guerrero-Serna, G., Haburcak, M., Diehl, C., Cuevas, J., Jalife, J., Bohm, A., Lin,Y.-S., Noujaim, S. F. Structural basis for the antiarrhythmic blockade of a potassium channel with a small molecule.


Assuntos
Antiarrítmicos/farmacologia , Cloroquina/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/química , Frequência Cardíaca/efeitos dos fármacos , Simulação de Acoplamento Molecular , Bloqueadores dos Canais de Potássio/farmacologia , Substituição de Aminoácidos , Animais , Antiarrítmicos/química , Sítios de Ligação , Cloroquina/química , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Células HEK293 , Humanos , Masculino , Bloqueadores dos Canais de Potássio/química , Ligação Proteica , Ovinos
18.
PLoS Comput Biol ; 14(3): e1006017, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29505583

RESUMO

Anatomically based procedures to ablate atrial fibrillation (AF) are often successful in terminating paroxysmal AF. However, the ability to terminate persistent AF remains disappointing. New mechanistic approaches use multiple-electrode basket catheter mapping to localize and target AF drivers in the form of rotors but significant concerns remain about their accuracy. We aimed to evaluate how electrode-endocardium distance, far-field sources and inter-electrode distance affect the accuracy of localizing rotors. Sustained rotor activation of the atria was simulated numerically and mapped using a virtual basket catheter with varying electrode densities placed at different positions within the atrial cavity. Unipolar electrograms were calculated on the entire endocardial surface and at each of the electrodes. Rotors were tracked on the interpolated basket phase maps and compared with the respective atrial voltage and endocardial phase maps, which served as references. Rotor detection by the basket maps varied between 35-94% of the simulation time, depending on the basket's position and the electrode-to-endocardial wall distance. However, two different types of phantom rotors appeared also on the basket maps. The first type was due to the far-field sources and the second type was due to interpolation between the electrodes; increasing electrode density decreased the incidence of the second but not the first type of phantom rotors. In the simulations study, basket catheter-based phase mapping detected rotors even when the basket was not in full contact with the endocardial wall, but always generated a number of phantom rotors in the presence of only a single real rotor, which would be the desired ablation target. Phantom rotors may mislead and contribute to failure in AF ablation procedures.


Assuntos
Técnicas de Ablação/métodos , Fibrilação Atrial/fisiopatologia , Biologia Computacional/métodos , Técnicas de Ablação/estatística & dados numéricos , Potenciais de Ação , Fibrilação Atrial/terapia , Biologia Computacional/estatística & dados numéricos , Simulação por Computador , Átrios do Coração/fisiopatologia , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca , Humanos , Modelos Biológicos , Fatores de Tempo
19.
Europace ; 21(5): 822-832, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649290

RESUMO

AIMS: Myocardial infarction (MI) alters cardiac fibre organization with unknown consequences on ventricular arrhythmia. We used diffusion tensor imaging (DTI) of three-dimensional (3D) cardiac fibres and scar reconstructions to identify the main parameters associated with ventricular arrhythmia inducibility and ventricular tachycardia (VT) features after MI. METHODS AND RESULTS: Twelve pigs with established MI and three controls underwent invasive electrophysiological characterization of ventricular arrhythmia inducibility and VT features. Animal-specific 3D scar and myocardial fibre distribution were obtained from ex vivo high-resolution contrast-enhanced T1 mapping and DTI sequences. Diffusion tensor imaging-derived parameters significantly different between healthy and scarring myocardium, scar volumes, and left ventricular ejection fraction (LVEF) were included for arrhythmia risk stratification and correlation analyses with VT features. Ventricular fibrillation (VF) was the only inducible arrhythmia in 4 out of 12 infarcted pigs and all controls. Ventricular tachycardia was also inducible in the remaining eight pigs during programmed ventricular stimulation. A DTI-based 3D fibre disorganization index (FDI) showed higher disorganization within dense scar regions of VF-only inducible pigs compared with VT inducible animals (FDI: 0.36; 0.36-0.37 vs. 0.32; 0.26-0.33, respectively, P = 0.0485). Ventricular fibrillation induction required lower programmed stimulation aggressiveness in VF-only inducible pigs than VT inducible and control animals. Neither LVEF nor scar volumes differentiated between VF and VT inducible animals. Re-entrant VT circuits were localized within areas of highly disorganized fibres. Moreover, the FDI within heterogeneous scar regions was associated with the median VT cycle length per animal (R2 = 0.5320). CONCLUSION: The amount of scar-related cardiac fibre disorganization in DTI sequences is a promising approach for ventricular arrhythmia stratification after MI.


Assuntos
Cicatriz , Imagem de Tensor de Difusão/métodos , Coração/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Infarto do Miocárdio/complicações , Miocárdio/patologia , Taquicardia Ventricular , Animais , Cicatriz/diagnóstico por imagem , Cicatriz/patologia , Cicatriz/fisiopatologia , Medição de Risco , Suínos , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/fisiopatologia
20.
Europace ; 21(1): 163-174, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239689

RESUMO

AIMS: We aimed to study the differences in biventricular scar characterization using bipolar voltage mapping compared with state-of-the-art in vivo delayed gadolinium-enhanced cardiac magnetic resonance (LGE-CMR) imaging and ex vivo T1 mapping. METHODS AND RESULTS: Ten pigs with established myocardial infarction (MI) underwent in vivo scar characterization using LGE-CMR imaging and high-density voltage mapping of both ventricles using a 3.5-mm tip catheter. Ex vivo post-contrast T1 mapping provided a high-resolution reference. Voltage maps were registered onto the left and right ventricular (LV and RV) endocardium, and epicardium of CMR-based geometries to compare voltage-derived scars with surface-projected 3D scars. Voltage-derived scar tissue of the LV endocardium and the epicardium resembled surface projections of 3D in vivo and ex vivo CMR-derived scars using 1-mm of surface projection distance. The thinner wall of the RV was especially sensitive to lower resolution in vivo LGE-CMR images, in which differences between normalized low bipolar voltage areas and CMR-derived scar areas did not decrease below a median of 8.84% [interquartile range (IQR) (3.58, 12.70%)]. Overall, voltage-derived scars and surface scar projections from in vivo LGE-CMR sequences showed larger normalized scar areas than high-resolution ex vivo images [12.87% (4.59, 27.15%), 18.51% (11.25, 24.61%), and 9.30% (3.84, 19.59%), respectively], despite having used optimized surface projection distances. Importantly, 43.02% (36.54, 48.72%) of voltage-derived scar areas from the LV endocardium were classified as non-enhanced healthy myocardium using ex vivo CMR imaging. CONCLUSION: In vivo LGE-CMR sequences and high-density voltage mapping using a conventional linear catheter fail to provide accurate characterization of post-MI scar, limiting the specificity of voltage-based strategies and imaging-guided procedures.


Assuntos
Potenciais de Ação , Arritmias Cardíacas/diagnóstico , Cicatriz/diagnóstico por imagem , Técnicas Eletrofisiológicas Cardíacas , Sistema de Condução Cardíaco/fisiopatologia , Imageamento por Ressonância Magnética , Infarto do Miocárdio/diagnóstico por imagem , Miocárdio/patologia , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/fisiopatologia , Cicatriz/etiologia , Cicatriz/patologia , Cicatriz/fisiopatologia , Meios de Contraste/administração & dosagem , Modelos Animais de Doenças , Frequência Cardíaca , Masculino , Meglumina/administração & dosagem , Infarto do Miocárdio/complicações , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Compostos Organometálicos/administração & dosagem , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa