Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984706

RESUMO

BACKGROUND: In Malawi, the national pneumococcal conjugate vaccine (PCV13) demonstrated less herd immunity than the USA, likely due to higher natural pneumococcal carriage rates. We assessed PCV13 efficacy against experimental pneumococcal carriage in healthy Malawian adults. We explored how natural carriage (pneumococcal carriage of any other serotype apart from 6B) influenced experimental carriage rates and vaccine efficacy. METHODS: Healthy adults aged 18-40 were randomly assigned PCV13 (n=98) or saline (n=106), followed by intranasal SPN 6B inoculation at 20,000 (n=40), 80,000 (n=74), or 160,000 (n=90) CFU/100µl, 28 days post-vaccination. We evaluated natural and experimental pneumococcal carriage before and after vaccination on days 2, 7, and 14 post-inoculation using culture and multiplex qPCR targeting lytA/cpsA genes and compared carriage rates by vaccination status. RESULTS: Of 204 participants, 19.6% (40) exhibited experimental carriage, detected by culture and 25.5% (52) by qPCR. Vaccinated individuals had lower experimental carriage rates (10.2%, n=10/98) compared to the placebo group (28.3%, n=30/106). This difference in vaccine efficacy was more pronounced in participants without natural carriage (PCV13=8% n=6/75 vs. placebo=25.9%, n=21/81) compared to those with natural carriage (PCV13=14.8%, n=4/27 vs. placebo=26.5%, n=9/34). Using a log-binomial model, vaccine effectiveness (VE) was 62%, whether assessed by culture or qPCR. Natural carriers had a lower VE of 52% compared to participants with no natural carriage (VE=69%). CONCLUSION: We have shown that PCV13 VE estimate (62%) is robust whether carriage is assessed by culture or qPCR. PCV13 had lower VE in natural carriers compared to those without natural carriage at the inoculation visit.

2.
Nat Commun ; 15(1): 6291, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060226

RESUMO

Malawi experienced its deadliest Vibrio cholerae (Vc) outbreak following devastating cyclones, with >58,000 cases and >1700 deaths reported between March 2022 and May 2023. Here, we use population genomics to investigate the attributes and origin of the Malawi 2022-2023 Vc outbreak isolates. Our results demonstrate the predominance of ST69 clone, also known as the seventh cholera pandemic El Tor (7PET) lineage, expressing O1 Ogawa (~ 80%) serotype followed by Inaba (~ 16%) and sporadic non-O1/non-7PET serogroups (~ 4%). Phylogenetic reconstruction revealed that the Malawi outbreak strains correspond to a recent importation from Asia into Africa (sublineage AFR15). These isolates harboured known antimicrobial resistance and virulence elements, notably the ICEGEN/ICEVchHai1/ICEVchind5 SXT/R391-like integrative conjugative elements and a CTXφ prophage with the ctxB7 genotype compared to historical Malawian Vc isolates. These data suggest that the devastating cyclones coupled with the recent importation of 7PET serogroup O1 strains, may explain the magnitude of the 2022-2023 cholera outbreak in Malawi.


Assuntos
Cólera , Surtos de Doenças , Filogenia , Vibrio cholerae , Malaui/epidemiologia , Cólera/epidemiologia , Cólera/microbiologia , Humanos , Vibrio cholerae/genética , Vibrio cholerae/classificação , Genômica , Genoma Bacteriano/genética , Prófagos/genética , Genótipo , Sorogrupo
3.
Am J Respir Crit Care Med, v. 201, n. 3, fev. 2020
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-2941

RESUMO

Rationale: Pneumococcal pneumonia remains a global health problem. Colonization of the nasopharynx with Streptococcus pneumoniae (Spn), although a prerequisite of infection, is the main source of exposure and immunological boosting in children and adults. However, our knowledge of how nasal colonization impacts on the lung cells, especially on the predominant alveolar macrophage (AM) population, is limited. Objectives: Using a controlled human infection model to achieve nasal colonization with 6B serotype, we investigated the effect of Spn colonization on lung cells. Methods: We collected BAL from healthy pneumococcal-challenged participants aged 18–49 years. Confocal microscopy and molecular and classical microbiology were used to investigate microaspiration and pneumococcal presence in the lower airways. AM opsonophagocytic capacity was assessed by functional assays in vitro, whereas flow cytometry and transcriptomic analysis were used to assess further changes on the lung cellular populations. Measurements and Main Results: AMs from Spn-colonized individuals exhibited increased opsonophagocytosis to pneumococcus (11.4% median increase) for approximately 3 months after experimental pneumococcal colonization. AMs also had increased responses against other bacterial pathogens. Pneumococcal DNA detected in the BAL samples of Spn-colonized individuals were positively correlated with nasal pneumococcal density (r=0.71; P=0.029). Similarly, AM heightened opsonophagocytic capacity was correlated with nasopharyngeal pneumococcal density (r=0.61, P=0.025). Conclusions: Our findings demonstrate that nasal colonization with pneumococcus and microaspiration prime AMs, leading to brisker responsiveness to both pneumococcus and unrelated bacterial pathogens. The relative abundance of AMs in the alveolar spaces, alongside their potential for nonspecific protection, render them an attractive target for novel vaccines.

4.
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib17441

RESUMO

Rationale: Pneumococcal pneumonia remains a global health problem. Colonization of the nasopharynx with Streptococcus pneumoniae (Spn), although a prerequisite of infection, is the main source of exposure and immunological boosting in children and adults. However, our knowledge of how nasal colonization impacts on the lung cells, especially on the predominant alveolar macrophage (AM) population, is limited. Objectives: Using a controlled human infection model to achieve nasal colonization with 6B serotype, we investigated the effect of Spn colonization on lung cells. Methods: We collected BAL from healthy pneumococcal-challenged participants aged 18–49 years. Confocal microscopy and molecular and classical microbiology were used to investigate microaspiration and pneumococcal presence in the lower airways. AM opsonophagocytic capacity was assessed by functional assays in vitro, whereas flow cytometry and transcriptomic analysis were used to assess further changes on the lung cellular populations. Measurements and Main Results: AMs from Spn-colonized individuals exhibited increased opsonophagocytosis to pneumococcus (11.4% median increase) for approximately 3 months after experimental pneumococcal colonization. AMs also had increased responses against other bacterial pathogens. Pneumococcal DNA detected in the BAL samples of Spn-colonized individuals were positively correlated with nasal pneumococcal density (r=0.71; P=0.029). Similarly, AM heightened opsonophagocytic capacity was correlated with nasopharyngeal pneumococcal density (r=0.61, P=0.025). Conclusions: Our findings demonstrate that nasal colonization with pneumococcus and microaspiration prime AMs, leading to brisker responsiveness to both pneumococcus and unrelated bacterial pathogens. The relative abundance of AMs in the alveolar spaces, alongside their potential for nonspecific protection, render them an attractive target for novel vaccines.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa