Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Br J Clin Pharmacol ; 89(1): 158-186, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-33226664

RESUMO

AIMS: The storm-like nature of the health crises caused by COVID-19 has led to unconventional clinical trial practices such as the relaxation of exclusion criteria. The question remains: how can we conduct diverse trials without exposing subgroups of populations to potentially harmful drug exposure levels? The aim of this study was to build a knowledge base of the effect of intrinsic/extrinsic factors on the disposition of several repurposed COVID-19 drugs. METHODS: Physiologically based pharmacokinetic (PBPK) models were used to study the change in the pharmacokinetics (PK) of drugs repurposed for COVID-19 in geriatric patients, different race groups, organ impairment and drug-drug interactions (DDIs) risks. These models were also used to predict epithelial lining fluid (ELF) exposure, which is relevant for COVID-19 patients under elevated cytokine levels. RESULTS: The simulated PK profiles suggest no dose adjustments are required based on age and race for COVID-19 drugs, but dose adjustments may be warranted for COVID-19 patients also exhibiting hepatic/renal impairment. PBPK model simulations suggest ELF exposure to attain a target concentration was adequate for most drugs, except for hydroxychloroquine, azithromycin, atazanavir and lopinavir/ritonavir. CONCLUSION: We demonstrate that systematically collated data on absorption, distribution, metabolism and excretion, human PK parameters, DDIs and organ impairment can be used to verify simulated plasma and lung tissue exposure for drugs repurposed for COVID-19, justifying broader patient recruitment criteria. In addition, the PBPK model developed was used to study the effect of age and ethnicity on the PK of repurposed drugs, and to assess the correlation between lung exposure and relevant potency values from in vitro studies for SARS-CoV-2.


Assuntos
COVID-19 , Hepatopatias , Humanos , Idoso , SARS-CoV-2 , Interações Medicamentosas , Hidroxicloroquina , Modelos Biológicos , Farmacocinética , Simulação por Computador
2.
J Pharmacokinet Pharmacodyn ; 50(5): 365-376, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37344637

RESUMO

Enzalutamide is known to strongly induce cytochrome P450 3A4 (CYP3A4). Furthermore, enzalutamide showed induction and inhibition of P-glycoprotein (P-gp) in in vitro studies. A clinical drug-drug interaction (DDI) study between enzalutamide and digoxin, a typical P-gp substrate, suggested enzalutamide has weak inhibitory effect on P-gp substrates. Direct oral anticoagulants (DOACs), such as apixaban and rivaroxaban, are dual substrates of CYP3A4 and P-gp, and hence it is recommended to avoid co-administration of these DOACs with combined P-gp and strong CYP3A inducers. Enzalutamide's net effect on P-gp and CYP3A for apixaban and rivaroxaban plasma exposures is of interest to physicians who treat patients for venous thromboembolism with prostate cancer. Accordingly, a physiologically-based pharmacokinetic (PBPK) analysis was performed to predict the magnitude of DDI on apixaban and rivaroxaban exposures in the presence of 160 mg once-daily dosing of enzalutamide. The PBPK models of enzalutamide and M2, a major metabolite of enzalutamide which also has potential to induce CYP3A and P-gp and inhibit P-gp, were developed and verified as perpetrators of CYP3A-and P-gp-mediated interaction. Simulation results predicted a 31% decrease in AUC and no change in Cmax for apixaban and a 45% decrease in AUC and a 25% decrease in Cmax for rivaroxaban when 160 mg multiple doses of enzalutamide were co-administered. In summary, enzalutamide is considered to decrease apixaban and rivaroxaban exposure through the combined effects of CYP3A induction and net P-gp inhibition. Concurrent use of these drugs warrants careful monitoring for efficacy and safety.


Assuntos
Citocromo P-450 CYP3A , Rivaroxabana , Masculino , Humanos , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Preparações Farmacêuticas/metabolismo , Modelos Biológicos
3.
Drug Metab Dispos ; 50(4): 386-400, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35046066

RESUMO

Concerns over maternal and fetal drug exposures highlight the need for a better understanding of drug distribution into the fetus through the placental barrier. This study aimed to predict maternal and fetal drug disposition using physiologically based pharmacokinetic (PBPK) modeling. The detailed maternal-placental-fetal PBPK model within the Simcyp Simulator V20 was used to predict the maternal and fetoplacental exposure of cefazolin, cefuroxime, and amoxicillin during pregnancy and at delivery. The mechanistic dynamic model includes physiologic changes of the maternal, fetal, and placental parameters over the course of pregnancy. Placental kinetics were parametrized using permeability parameters determined from the physicochemical properties of these compounds. Then, the PBPK predictions were compared with the observed data. Fully bottom-up fetoplacental PBPK models were developed for cefuroxime, cefazolin, and amoxicillin without any parameter fitting. Predictions in nonpregnant subjects and in pregnant subjects fall within 2-fold of the observed values. Predictions matched observed pharmacokinetic data reported in nine maternal (five fetoplacental) studies for cefuroxime, 10 maternal (five fetoplacental) studies for cefazolin, and six maternal (two fetoplacental) studies for amoxicillin. Integration of the fetal and maternal system parameters within PBPK models, together with compound-related parameters used to calculate placental permeability, facilitates and extends the applications of the maternal-placental-fetal PBPK model. The developed model can also be used for designing clinical trials and prospectively used for maternal-fetal risk assessment after maternally administered drugs or unintended exposure to environmental toxicants. SIGNIFICANCE STATEMENT: This study investigates the performance of an integrated maternal-placental-fetal PBPK model to predict maternal and fetal tissue exposure of renally eliminated antibiotics that cross the placenta through a passive diffusion mechanism. The transplacental permeability clearance was predicted from the drug physicochemical properties. Results demonstrate that the PBPK approach can facilitate the prediction of maternal and fetal drug exposure simultaneously at any gestational age to support its use in the maternal-fetal exposure assessments.


Assuntos
Cefazolina , Cefuroxima , Amoxicilina , Cefazolina/farmacocinética , Cefuroxima/farmacocinética , Feminino , Humanos , Troca Materno-Fetal/fisiologia , Modelos Biológicos , Placenta , Gravidez
4.
Drug Metab Dispos ; 50(7): 957-967, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35504655

RESUMO

Tizanidine, a centrally acting skeletal muscle relaxant, is predominantly metabolized by CYP1A2 and undergoes extensive hepatic first-pass metabolism after oral administration. As a highly extracted drug, the systemic exposure to tizanidine exhibits considerable interindividual variability and is altered substantially when coadministered with CYP1A2 inhibitors or inducers. The aim of the current study was to compare the performance of a permeability-limited multicompartment liver (PerMCL) model, which operates as an approximation of the dispersion model, and the well stirred model (WSM) for predicting tizanidine drug-drug interactions (DDIs). Physiologically based pharmacokinetic models were developed for tizanidine, incorporating the PerMCL model and the WSM, respectively, to simulate the interaction of tizanidine with a range of CYP1A2 inhibitors and inducers. Whereas the WSM showed a tendency to underpredict the fold change of tizanidine area under the plasma concentration-time curve (AUC ratio) in the presence of perpetrators, the use of PerMCL model increased precision (absolute average-fold error: 1.32-1.42 versus 1.58) and decreased bias (average-fold error: 0.97-1.25 versus 0.63) for the predictions of mean AUC ratios as compared with the WSM. The PerMCL model captured the observed range of individual AUC ratios of tizanidine as well as the correlation between individual AUC ratios and CYP1A2 activities without interactions, whereas the WSM was not able to capture these. The results demonstrate the advantage of using the PerMCL model over the WSM in predicting the magnitude and interindividual variability of DDIs for a highly extracted sensitive substrate tizanidine. SIGNIFICANCE STATEMENT: This study demonstrates the advantages of the PerMCL model, which operates as an approximation of the dispersion model, in mitigating the tendency of the WSM to underpredict the magnitude and variability of DDIs of a highly extracted CYP1A2 substrate tizanidine when it is administered with CYP1A2 inhibitors or inducers. The physiologically based pharmacokinetic modeling approach described herein is valuable to the understanding of drug interactions of highly extracted substrates and the source of its interindividual variability.


Assuntos
Inibidores do Citocromo P-450 CYP1A2 , Citocromo P-450 CYP1A2 , Clonidina/análogos & derivados , Citocromo P-450 CYP1A2/metabolismo , Interações Medicamentosas , Humanos , Fígado/metabolismo , Modelos Biológicos , Permeabilidade
5.
Mol Pharm ; 19(9): 3139-3152, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35969125

RESUMO

Physiologically based pharmacokinetic (PBPK) modeling has increasingly been employed in dermal drug development and regulatory assessment, providing a framework to integrate relevant information including drug and drug product attributes, skin physiology parameters, and population variability. The current study aimed to develop a stepwise modeling workflow with knowledge gained from modeling in vitro skin permeation testing (IVPT) to describe in vivo exposure of metronidazole locally in the stratum corneum following topical application of complex semisolid drug products. The initial PBPK model of metronidazole in vitro skin permeation was developed using infinite and finite dose aqueous metronidazole solution. Parameters such as stratum corneum lipid-water partition coefficient (Ksclip/water) and stratum corneum lipid diffusion coefficient (Dsclip) of metronidazole were optimized using IVPT data from simple aqueous solutions (infinite) and MetroGel (10 mg/cm2 dose application), respectively. The optimized model, when parameterized with physical and structural characteristics of the drug products, was able to accurately predict the mean cumulative amount permeated (cm2/h) and flux (µg/cm2/h) profiles of metronidazole following application of different doses of MetroGel and MetroCream. Thus, the model was able to capture the impact of differences in drug product microstructure and metamorphosis of the dosage form on in vitro metronidazole permeation. The PBPK model informed by IVPT study data was able to predict the metronidazole amount in the stratum corneum as reported in clinical studies. In summary, the proposed model provides an enhanced understanding of the potential impact of drug product attributes in influencing in vitro skin permeation of metronidazole. Key kinetic parameters derived from modeling the metronidazole IVPT data improved the predictions of the developed PBPK model of in vivo local metronidazole concentrations in the stratum corneum. Overall, this work improves our confidence in the proposed workflow that accounts for drug product attributes and utilizes IVPT data toward improving predictions from advanced modeling and simulation tools.


Assuntos
Metronidazol , Pele , Administração Cutânea , Lipídeos , Água
6.
Xenobiotica ; 52(8): 943-956, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36222269

RESUMO

Non-specific binding in in vitro metabolism systems leads to an underestimation of the true intrinsic metabolic clearance of compounds being studied. Therefore in vitro binding needs to be accounted for when extrapolating in vitro data to predict the in vivo metabolic clearance of a compound. While techniques exist for experimentally determining the fraction of a compound unbound in in vitro metabolism systems, early in drug discovery programmes computational approaches are often used to estimate the binding in the in vitro system.Experimental fraction unbound data (n = 60) were generated in liver microsomes (fumic) from five commonly used pre-clinical species (rat, mouse, dog, minipig, monkey) and humans. Unbound fraction in incubations with mouse, rat or human hepatocytes was determined for the same 60 compounds. These data were analysed to determine the relationship between experimentally determined binding in the different matrices and across different species. In hepatocytes there was a good correlation between fraction unbound in human and rat (r2=0.86) or mouse (r2=0.82) hepatocytes. Similar correlations were observed between binding in human liver microsomes and microsomes from rat, mouse, dog, Göttingen minipig or monkey liver microsomes (r2 of >0.89, n = 51 - 52 measurements in different species). Physicochemical parameters (logP, pKa and logD) were predicted for all evaluated compounds. In addition, logP and/or logD were measured for a subset of compounds.Binding to human hepatocytes predicted using 5 different methods was compared to the measured data for a set of 59 compounds. The best methods evaluated used measured microsomal binding in human liver microsomes to predict hepatocyte binding. The collated physicochemical data were used to predict the human fumic using four different in silico models for a set of 53-60 compounds. The correlation (r2) and root mean square error between predicted and observed microsomal binding was 0.69 & 0.20, 0.47 & 0.23, 0.56 & 0.21 and 0.54 & 0.26 for the Turner-Simcyp, Austin, Hallifax-Houston and Poulin models, respectively. These analyses were extended to include measured literature values for binding in human liver microsomes for a larger set of compounds (n=697). For the larger dataset of compounds, microsomal binding was well predicted for neutral compounds (r2=0.67 - 0.70) using the Poulin, Austin, or Turner-Simcyp methods but not for acidic or basic compounds (r2<0.5) using any of the models. While the lipophilicity-based models can be used, the in vitro binding should be measured for compounds where more certainty is needed, using appropriately calibrated assays and possibly established weak, moderate, and strong binders as reference compounds to allow comparison across databases.


Assuntos
Hepatócitos , Microssomos Hepáticos , Animais , Cães , Humanos , Camundongos , Ratos , Haplorrinos , Hepatócitos/metabolismo , Taxa de Depuração Metabólica , Microssomos Hepáticos/metabolismo , Modelos Biológicos , Suínos , Porco Miniatura , Reprodutibilidade dos Testes
7.
Biopharm Drug Dispos ; 43(5): 201-212, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36209366

RESUMO

Medication use during breastfeeding can be a matter of concern due to unintended infant exposure to drugs through breast milk. The available information relating to the safety of most medications is limited and may vary. More precise information is needed regarding the safety to the newborn or infants of the medications taken by the mother during breastfeeding. Physiologically based Pharmacokinetic Model (PBPK) approaches can be utilized to predict the drug exposure in the milk of breastfeeding women and can act as a supporting tool in the risk assessment of feeding infants. This study aims to assess the predictive performance of an integrated 'log transformed phase-distribution' lactation model within a PBPK platform. The model utilizes the physicochemical properties of four basic drugs, namely tramadol, venlafaxine, fluoxetine, and paroxetine, and analyses the milk compositions to predict the milk-to-plasma (M/P) ratio. The M/P prediction model was incorporated within the Simcyp Simulator V20 to predict the milk exposure and to estimate the likely infant dose for these drugs. The PBPK models adequately predicted the maternal plasma exposure, M/P ratio, and the infant daily dose to within two-fold of the clinically observed values for all four compounds. Integration of the lactation model within PBPK models facilitates the prediction of drug exposure in breast milk. The developed model can inform the design of lactation studies and assist with the neonatal risk assessment after maternal exposure to such environmental chemicals or basic drugs which diffuse passively into the milk.


Assuntos
Aleitamento Materno , Leite Humano , Lactente , Recém-Nascido , Humanos , Feminino , Leite Humano/química , Lactação , Fluoxetina/análise , Algoritmos
8.
Mol Pharm ; 17(7): 2329-2344, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32427480

RESUMO

Ritonavir is a well-known CYP3A4 and CYP2D6 enzyme inhibitor, frequently used to assess the drug-drug interaction (DDI) liability of susceptible drugs. It is also used as a pharmacokinetic booster to increase exposure to CYP3A4 substrates. This study aimed to develop a mechanistic absorption and disposition model to describe exposure to ritonavir following oral dosing of the commercial amorphous solid dispersion tablet, Norvir, under fasted and fed conditions. A mechanistic description of ritonavir absorption from Norvir tablets may help to improve the design of DDI studies. Key parameters of amorphous ritonavir including free base solubility (solubility of the unbound, un-ionized species), bile micelle partition coefficients, formulation wetting/disintegration, and in vivo precipitation parameters were either obtained from the literature or estimated by modeling in vitro biopharmaceutic experiments. Based on variety of in vitro evidence, a main assumption of the model is that ritonavir does not form a crystalline precipitate while resident in the gastrointestinal tract. In the model, if simulated luminal concentration exceeds the amorphous solubility limit, then precipitation to an amorphous form is immediate. Simulated and observed Cmax and AUC0-t parameters were well captured (within 1.5-fold) for both fasted and fed states in healthy volunteers. By accounting for luminal fluid viscosity differences in the different prandial states (affecting drug diffusivity) as well as the effect of drug free fraction on gut wall permeation rates, it was possible to explain the negative food effect observed for Norvir tablets in humans. In summary, a biopharmaceutic in vitro in vivo extrapolation approach provides confidence in (verification of) key input parameters of the physiologically-based pharmacokinetic ritonavir model which resulted in successful simulation of observed plasma profiles.


Assuntos
Produtos Biológicos/farmacocinética , Ingestão de Alimentos , Jejum , Absorção Intestinal/efeitos dos fármacos , Ritonavir/farmacocinética , Administração Oral , Produtos Biológicos/administração & dosagem , Produtos Biológicos/química , Biofarmácia , Simulação por Computador , Dieta Hiperlipídica , Interações Medicamentosas , Voluntários Saudáveis , Humanos , Concentração de Íons de Hidrogênio , Modelos Biológicos , Permeabilidade , Ritonavir/administração & dosagem , Ritonavir/química , Solubilidade , Comprimidos , Viscosidade , Água/química
9.
Mol Pharm ; 17(2): 588-594, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31794668

RESUMO

The mechanisms of drug clearance from the aqueous humor are poorly defined. In this study, a cocktail approach was used to simultaneously determine the pharmacokinetics of three ß-blocker agents after intracameral (ic) injection into the rabbit eyes. Aqueous humor samples were collected and analyzed using LC-MS/MS to determine drug concentrations. Pharmacokinetic parameters were obtained using a compartmental fitting approach, and the estimated clearance, volume of distribution, and half-life values were the following: atenolol (6.44 µL/min, 687 µL, and 73.87 min), timolol (19.30 µL/min, 937 µL, and 33.64 min), and betaxolol (32.20 µL/min, 1421 µL, and 30.58 min). Increased compound lipophilicity (atenolol < timolol < betaxolol) resulted in higher clearance and volume of distributions in the aqueous humor. Clearance of timolol and betaxolol is about 10 times higher than the aqueous humor outflow, demonstrating the importance of other elimination routes (e.g., uptake to iris and ciliary body and subsequent elimination via blood flow).


Assuntos
Antagonistas de Receptores Adrenérgicos beta 1/farmacocinética , Atenolol/farmacocinética , Betaxolol/farmacocinética , Injeções Intraoculares/métodos , Timolol/farmacocinética , Animais , Humor Aquoso/química , Humor Aquoso/efeitos dos fármacos , Humor Aquoso/metabolismo , Atenolol/administração & dosagem , Betaxolol/administração & dosagem , Cromatografia Líquida , Combinação de Medicamentos , Meia-Vida , Pressão Intraocular/efeitos dos fármacos , Masculino , Taxa de Depuração Metabólica , Coelhos , Espectrometria de Massas em Tandem , Timolol/administração & dosagem , Distribuição Tecidual
10.
J Pharmacokinet Pharmacodyn ; 47(4): 361-383, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32840724

RESUMO

Concerns over gestational effects on the disposition of drugs has highlighted the need for a better understanding of drug distribution and elimination during pregnancy. This study aimed at predicting maternal drug kinetics using a physiologically based pharmacokinetic (PBPK) modelling approach focusing on the observed gestational changes in three important Cytochrome P450 metabolizing enzymes, namely, CYP1A2, CYP2D6 and CYP3A4 at different gestational weeks (GWs). The Pregnancy PBPK model within the Simcyp Simulator V19 was used to predict the pharmacokinetics of sensitive probes to these enzymes; namely caffeine, theophylline, metoprolol, propranolol, paroxetine, midazolam, nifedipine and rilpivirine. PBPK model predictions were compared against clinical data collated from multiple studies for each compound to cover a wide spectrum of gestational ages. Pregnancy PBPK model predictions were within 2-fold error and indicated that CYP1A2 activity is approximately 0.70, 0.44 and 0.30 fold of the non-pregnant level at the end of the first, second and third trimesters, respectively. On the other hand, CYP2D6 activity increases by 1.36, 2.16 and 3.10 fold of the non-pregnant level at the end of the first, second and third trimesters, respectively. Likewise, CYP3A4 activity increases by 1.25, 1.75 and 2.32 fold of the non-pregnant level at the end of the first, second and third trimesters, respectively. The enzymes activity have been qualified throughout pregnancy. Quantified changes in drug dosing are most relevant during the third trimester, especially for drugs that are mainly eliminated by CYP1A2, CYP2D6 and CYP3A4 enzymes. The provided functions describing the continuous changes to the activity of these enzymes during pregnancy are important when modelling long term pharmacokinetic studies where longitudinal modelling or time-varying covariates are used.


Assuntos
Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Modelos Biológicos , Medicamentos sob Prescrição/farmacocinética , Administração Intravenosa , Administração Oral , Adolescente , Adulto , Variação Biológica da População , Relação Dose-Resposta a Droga , Feminino , Idade Gestacional , Humanos , Idade Materna , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Gravidez , Complicações na Gravidez/tratamento farmacológico , Complicações na Gravidez/metabolismo , Trimestres da Gravidez/metabolismo , Medicamentos sob Prescrição/administração & dosagem , Processos Estocásticos , Distribuição Tecidual , Adulto Jovem
11.
J Pharmacokinet Pharmacodyn ; 45(3): 457-467, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29520534

RESUMO

Cardiotoxicity is among the top drug safety concerns, and is of specific interest in tuberculosis, where this is a known or potential adverse event of current and emerging treatment regimens. As there is a need for a tool, beyond the QT interval, to quantify cardiotoxicity early in drug development, an empirical decision tree based classifier was developed to predict the risk of Torsades de pointes (TdP). The cardiac risk algorithm was developed using pseudo-electrocardiogram (ECG) outputs derived from cardiac myocyte electromechanical model simulations of increasing concentrations of 96 reference compounds which represented a range of clinical TdP risk. The algorithm correctly classified 89% of reference compounds with moderate sensitivity and high specificity (71 and 96%, respectively) as well as 10 out of 12 external validation compounds and the anti-TB drugs moxifloxacin and bedaquiline. The cardiac risk algorithm is suitable to help inform early drug development decisions in TB and will evolve with the addition of emerging data.


Assuntos
Antituberculosos/efeitos adversos , Antituberculosos/uso terapêutico , Cardiotoxicidade/etiologia , Coração/efeitos dos fármacos , Torsades de Pointes/induzido quimicamente , Tuberculose/tratamento farmacológico , Adulto , Algoritmos , Diarilquinolinas/efeitos adversos , Diarilquinolinas/uso terapêutico , Desenvolvimento de Medicamentos/métodos , Eletrocardiografia/métodos , Feminino , Humanos , Masculino , Moxifloxacina/efeitos adversos , Medição de Risco , Sensibilidade e Especificidade
12.
Mol Pharm ; 14(12): 4305-4320, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-28771009

RESUMO

Mechanistic modeling of in vitro data generated from metabolic enzyme systems (viz., liver microsomes, hepatocytes, rCYP enzymes, etc.) facilitates in vitro-in vivo extrapolation (IVIV_E) of metabolic clearance which plays a key role in the successful prediction of clearance in vivo within physiologically-based pharmacokinetic (PBPK) modeling. A similar concept can be applied to solubility and dissolution experiments whereby mechanistic modeling can be used to estimate intrinsic parameters required for mechanistic oral absorption simulation in vivo. However, this approach has not widely been applied within an integrated workflow. We present a stepwise modeling approach where relevant biopharmaceutics parameters for ketoconazole (KTZ) are determined and/or confirmed from the modeling of in vitro experiments before being directly used within a PBPK model. Modeling was applied to various in vitro experiments, namely: (a) aqueous solubility profiles to determine intrinsic solubility, salt limiting solubility factors and to verify pKa; (b) biorelevant solubility measurements to estimate bile-micelle partition coefficients; (c) fasted state simulated gastric fluid (FaSSGF) dissolution for formulation disintegration profiling; and (d) transfer experiments to estimate supersaturation and precipitation parameters. These parameters were then used within a PBPK model to predict the dissolved and total (i.e., including the precipitated fraction) concentrations of KTZ in the duodenum of a virtual population and compared against observed clinical data. The developed model well characterized the intraluminal dissolution, supersaturation, and precipitation behavior of KTZ. The mean simulated AUC0-t of the total and dissolved concentrations of KTZ were comparable to (within 2-fold of) the corresponding observed profile. Moreover, the developed PBPK model of KTZ successfully described the impact of supersaturation and precipitation on the systemic plasma concentration profiles of KTZ for 200, 300, and 400 mg doses. These results demonstrate that IVIV_E applied to biopharmaceutical experiments can be used to understand and build confidence in the quality of the input parameters and mechanistic models used for mechanistic oral absorption simulations in vivo, thereby improving the prediction performance of PBPK models. Moreover, this approach can inform the selection and design of in vitro experiments, potentially eliminating redundant experiments and thus helping to reduce the cost and time of drug product development.


Assuntos
Liberação Controlada de Fármacos , Absorção Intestinal/fisiologia , Cetoconazol/farmacocinética , Modelos Biológicos , Absorção Fisiológica , Administração Oral , Biofarmácia/métodos , Química Farmacêutica , Simulação por Computador , Humanos , Modelos Químicos , Permeabilidade , Solubilidade
13.
Mol Pharm ; 14(12): 4321-4333, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-28817288

RESUMO

The aim of this study was to evaluate gastrointestinal (GI) dissolution, supersaturation, and precipitation of posaconazole, formulated as an acidified (pH 1.6) and neutral (pH 7.1) suspension. A physiologically based pharmacokinetic (PBPK) modeling and simulation tool was applied to simulate GI and systemic concentration-time profiles of posaconazole, which were directly compared with intraluminal and systemic data measured in humans. The Advanced Dissolution Absorption and Metabolism (ADAM) model of the Simcyp Simulator correctly simulated incomplete gastric dissolution and saturated duodenal concentrations of posaconazole in the duodenal fluids following administration of the neutral suspension. In contrast, gastric dissolution was approximately 2-fold higher after administration of the acidified suspension, which resulted in supersaturated concentrations of posaconazole upon transfer to the upper small intestine. The precipitation kinetics of posaconazole were described by two precipitation rate constants, extracted by semimechanistic modeling of a two-stage medium change in vitro dissolution test. The 2-fold difference in exposure in the duodenal compartment for the two formulations corresponded with a 2-fold difference in systemic exposure. This study demonstrated for the first time predictive in silico simulations of GI dissolution, supersaturation, and precipitation for a weakly basic compound in part informed by modeling of in vitro dissolution experiments and validated via clinical measurements in both GI fluids and plasma. Sensitivity analysis with the PBPK model indicated that the critical supersaturation ratio (CSR) and second precipitation rate constant (sPRC) are important parameters of the model. Due to the limitations of the two-stage medium change experiment the CSR was extracted directly from the clinical data. However, in vitro experiments with the BioGIT transfer system performed after completion of the in silico modeling provided an almost identical CSR to the clinical study value; this had no significant impact on the PBPK model predictions.


Assuntos
Simulação por Computador , Liberação Controlada de Fármacos , Trato Gastrointestinal/fisiologia , Modelos Biológicos , Triazóis/farmacocinética , Administração Oral , Biofarmácia/métodos , Química Farmacêutica , Humanos , Concentração de Íons de Hidrogênio , Absorção Intestinal/fisiologia , Modelos Químicos , Solubilidade
14.
Biopharm Drug Dispos ; 38(4): 290-300, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28084034

RESUMO

Liver volume is a critical scaling factor for predicting drug clearance in physiologically based pharmacokinetic modelling and for both donor/recipient graft size estimation in liver transplantation. The accurate and precise estimation of liver volume is therefore essential. The objective here was to extend an existing meta-analysis using a non-linear mixed effects modelling approach for the estimation of liver volume to other race groups and paediatric and geriatric populations. Interrogation of the PubMed® database was undertaken using a text string query to ensure as objective a retrieval of liver volume data for the modelling exercise as possible. Missing body size parameters were estimated using simulations from the Simcyp Simulator V13R1 for an age and ethnically appropriate population. Non-linear mixed effect modelling was undertaken in Phoenix 1.3 (Certara) utilizing backward deletion and forward inclusion of covariates from fully parameterized models. Existing liver volume models based on body surface area (BSA) and body weight and height were implemented for comparison. The extension of a structural model using a BSA equation and incorporating the Japanese race and age as covariates and exponents on LV0 (θBaseline ) and body surface area (θBSA ), respectively, delivered a comparatively low objective function value. Bootstrapping of the original dataset revealed that the confidence intervals (2.5-97.5%) for the fitted (theta) parameter estimates were bounded by the bootstrapped estimates of the same. In conclusion, extension and re-parameterization of the existing Johnson model adequately describes changes in liver volume using the body surface area in all investigated populations. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Envelhecimento/fisiologia , Fígado/anatomia & histologia , Fígado/crescimento & desenvolvimento , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Povo Asiático , Superfície Corporal , Criança , Pré-Escolar , Intervalos de Confiança , Interpretação Estatística de Dados , Etnicidade , Feminino , Humanos , Lactente , Recém-Nascido , Fígado/diagnóstico por imagem , Masculino , Metanálise como Assunto , Pessoa de Meia-Idade , Dinâmica não Linear , Farmacocinética , População , Adulto Jovem
15.
Toxicol Mech Methods ; 27(2): 88-99, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27813448

RESUMO

BACKGROUND AND PURPOSE: To determine the predictive performance of in silico models using drug-specific preclinical cardiac electrophysiology data to investigate drug-induced arrhythmia risk (e.g. Torsade de pointes (TdP)) in virtual human subjects. EXPERIMENTAL APPROACH: To assess drug proarrhythmic risk, we used a set of in vitro electrophysiological measurements describing ion channel inhibition triggered by the investigated drugs. The Cardiac Safety Simulator version 2.0 (CSS; Simcyp, Sheffield, UK) platform was used to simulate human left ventricular cardiac myocyte action potential models. RESULTS: This study shows the impact of drug concentration changes on particular ionic currents by using available experimental data. The simulation results display safety threshold according to drug concentration threshold and log (threshold concentration/ effective therapeutic plasma concentration (ETPC)). CONCLUSION AND IMPLICATIONS: We reproduced the underlying biophysical characteristics of cardiac cells resulted in effects of drugs associated with cardiac arrhythmias (action potential duration (APD) and QT prolongation and TdP) which were observed in published 3D simulations, yet with much less computational burden.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Arritmias Cardíacas/induzido quimicamente , Simulação por Computador , Drogas em Investigação/efeitos adversos , Modelos Biológicos , Miócitos Cardíacos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Humanos
16.
Drug Metab Dispos ; 44(7): 1090-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26862026

RESUMO

Information on the developmental changes in biliary excretion (BE) of drugs is sparse. The aims of this study were to collate literature data on the pharmacokinetics of biliary excretion of drugs used in pediatrics and to apply a physiologically based pharmacokinetic (PBPK) model to predict their systemic clearance (CL) with a view to elucidating age-related changes in biliary excretion. Drug parameters for azithromycin, ceftriaxone, and digoxin administered intravenously and buprenorphine (intravenous and sublingual) were collated from the literature and used in the Simcyp Simulator to predict adult CL values, which were then validated against observed data. The change in CL with age was simulated in the pediatric model and compared with observed data; where necessary, the ontogeny function associated with BE was applied to recover the age-related CL. For azithromycin a fraction of adult BE activity of 15% was necessary to predict the CL in neonates (26 weeks gestational age) and 100% activity was apparent by 7 months. For ceftriaxone and digoxin full BE activity appeared to be present at term birth; for digoxin, an adult BE activity of 10% was needed to predict the CL in premature neonates (30 weeks gestational age). The CL of buprenorphine with age was described by the ontogeny of the major elimination pathways (CYP3A4 and UGT1A1) with no ontogeny assumed for the biliary component. Thus, the ontogeny of BE for all four drugs appears to be rapid and they attain adult levels at birth or within the first few months of postnatal age.


Assuntos
Envelhecimento/metabolismo , Bile/metabolismo , Eliminação Hepatobiliar , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Farmacocinética , Biologia de Sistemas/métodos , Administração Intravenosa , Administração Sublingual , Fatores Etários , Biotransformação , Humanos , Lactente , Recém-Nascido , Preparações Farmacêuticas/administração & dosagem
17.
Drug Metab Dispos ; 44(6): 821-32, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27026679

RESUMO

Using physiologically based pharmacokinetic modeling, we predicted the magnitude of drug-drug interactions (DDIs) for studies with rifampicin and seven CYP3A4 probe substrates administered i.v. (10 studies) or orally (19 studies). The results showed a tendency to underpredict the DDI magnitude when the victim drug was administered orally. Possible sources of inaccuracy were investigated systematically to determine the most appropriate model refinement. When the maximal fold induction (Indmax) for rifampicin was increased (from 8 to 16) in both the liver and the gut, or when the Indmax was increased in the gut but not in liver, there was a decrease in bias and increased precision compared with the base model (Indmax = 8) [geometric mean fold error (GMFE) 2.12 vs. 1.48 and 1.77, respectively]. Induction parameters (mRNA and activity), determined for rifampicin, carbamazepine, phenytoin, and phenobarbital in hepatocytes from four donors, were then used to evaluate use of the refined rifampicin model for calibration. Calibration of mRNA and activity data for other inducers using the refined rifampicin model led to more accurate DDI predictions compared with the initial model (activity GMFE 1.49 vs. 1.68; mRNA GMFE 1.35 vs. 1.46), suggesting that robust in vivo reference values can be used to overcome interdonor and laboratory-to-laboratory variability. Use of uncalibrated data also performed well (GMFE 1.39 and 1.44 for activity and mRNA). As a result of experimental variability (i.e., in donors and protocols), it is prudent to fully characterize in vitro induction with prototypical inducers to give an understanding of how that particular system extrapolates to the in vivo situation when using an uncalibrated approach.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas/fisiologia , Rifampina/metabolismo , Administração Oral , Carbamazepina/metabolismo , Indução Enzimática/fisiologia , Trato Gastrointestinal/metabolismo , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Modelos Biológicos , Fenobarbital/metabolismo , Fenitoína/metabolismo , RNA Mensageiro/metabolismo
18.
Biopharm Drug Dispos ; 36(4): 245-57, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25600493

RESUMO

PURPOSE: Gastric emptying (GE) is often reported to be slower and more irregular in premature neonates than in older children and adults. The aim of this study was to investigate the impact of age and other covariates on the rate of GE. METHODS: The effect of age on the mean gastric residence times (MGRT) of liquid and solid food was assessed by analysing 49 published studies of 1457 individuals, aged from 28 weeks gestation to adults. The data were modelled using the nonlinear mixed-effects approach within NONMEM version 7.2 (ICON, Dublin, Ireland), with evaluation of postnatal age, gestational age and meal type as covariates. A double Weibull function was selected as a suitable model since it could account for the typical biphasic nature of GE. RESULTS: Age was not a significant covariate for GE but meal type was. Aqueous solutions were associated with the fastest emptying time (mean simulated gastric residence time of 45 min) and solid food was associated with the slowest (98 min). CONCLUSIONS: These findings challenge the assertion that GE is different in neonates, as compared with older children and adults due to age, and they reinforce the significance of food type in modulating GE.


Assuntos
Envelhecimento/fisiologia , Esvaziamento Gástrico/fisiologia , Modelos Biológicos , Adolescente , Adulto , Criança , Pré-Escolar , Alimentos , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Adulto Jovem
19.
Pharm Res ; 31(8): 1919-29, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24590877

RESUMO

PURPOSE: The objective of this study is to develop a physiologically-based pharmacokinetic (PBPK) model for each omeprazole enantiomer that accounts for nonlinear PK of the two enantiomers as well as omeprazole racemic drug. METHODS: By integrating in vitro, in silico and human PK data, we first developed PBPK models for each enantiomer. Simulation of racemic omeprazole PK was accomplished by combining enantiomer models that allow mutual drug interactions to occur. RESULTS: The established PBPK models for the first time satisfactorily predicted the nonlinear PK of esomeprazole, R-omeprazole and the racemic drug. The modeling exercises revealed that the strong time-dependent inhibition of CYP2C19 by esomeprazole greatly altered the R-omeprazole PK following administration of racemic omeprazole as in contrast to R-omeprazole given alone. When PBPK models incorporated both autoinhibition of each enantiomer and mutual interactions, the ratios between predicted and observed AUC following single and multiple dosing of omeprazole were 0.97 and 0.94, respectively. CONCLUSIONS: PBPK models of omeprazole enantiomers and racemic drug were developed. These models can be utilized to assess CYP2C19-mediated drug and genetic interaction potential for omeprazole and esomeprazole.


Assuntos
Desenho de Fármacos , Dinâmica não Linear , Omeprazol/farmacocinética , Farmacogenética/métodos , Citocromo P-450 CYP2C19/metabolismo , Previsões , Humanos , Omeprazol/química , Estereoisomerismo
20.
Pharmaceutics ; 16(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38675135

RESUMO

Physiological changes during pregnancy can alter maternal and fetal drug exposure. The objective of this work was to predict maternal and umbilical ceftazidime pharmacokinetics during pregnancy. Ceftazidime transplacental permeability was predicted from its physicochemical properties and incorporated into the model. Predicted concentrations and parameters from the PBPK model were compared to the observed data. PBPK predicted ceftazidime concentrations in non-pregnant and pregnant subjects of different gestational weeks were within 2-fold of the observations, and the observed concentrations fell within the 5th-95th prediction interval from the PBPK simulations. The calculated transplacental clearance (0.00137 L/h/mL of placenta volume) predicted an average umbilical cord-to-maternal plasma ratio of 0.7 after the first dose, increasing to about 1.0 at a steady state, which also agrees well with clinical observations. The developed maternal PBPK model adequately predicted the observed exposure and kinetics of ceftazidime in the pregnant population. Using a verified population-based PBPK model provides valuable insights into the disposition of drug concentrations in special individuals that are otherwise difficult to study and, in addition, offers the possibility of supplementing sparse samples obtained in vulnerable populations with additional knowledge, informing the dosing adjustment and study design, and improving the efficacy and safety of drugs in target populations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa