Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 134(5): 405-21, 2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27482003

RESUMO

BACKGROUND: High altitude is a challenging condition caused by insufficient oxygen supply. Inability to adjust to hypoxia may lead to pulmonary edema, stroke, cardiovascular dysfunction, and even death. Thus, understanding the molecular basis of adaptation to high altitude may reveal novel therapeutics to counteract the detrimental consequences of hypoxia. METHODS: Using high-throughput, unbiased metabolomic profiling, we report that the metabolic pathway responsible for production of erythrocyte 2,3-bisphosphoglycerate (2,3-BPG), a negative allosteric regulator of hemoglobin-O2 binding affinity, was significantly induced in 21 healthy humans within 2 hours of arrival at 5260 m and further increased after 16 days at 5260 m. RESULTS: This finding led us to discover that plasma adenosine concentrations and soluble CD73 activity rapidly increased at high altitude and were associated with elevated erythrocyte 2,3-BPG levels and O2 releasing capacity. Mouse genetic studies demonstrated that elevated CD73 contributed to hypoxia-induced adenosine accumulation and that elevated adenosine-mediated erythrocyte A2B adenosine receptor activation was beneficial by inducing 2,3-BPG production and triggering O2 release to prevent multiple tissue hypoxia, inflammation, and pulmonary vascular leakage. Mechanistically, we demonstrated that erythrocyte AMP-activated protein kinase was activated in humans at high altitude and that AMP-activated protein kinase is a key protein functioning downstream of the A2B adenosine receptor, phosphorylating and activating BPG mutase and thus inducing 2,3-BPG production and O2 release from erythrocytes. Significantly, preclinical studies demonstrated that activation of AMP-activated protein kinase enhanced BPG mutase activation, 2,3-BPG production, and O2 release capacity in CD73-deficient mice, in erythrocyte-specific A2B adenosine receptor knockouts, and in wild-type mice and in turn reduced tissue hypoxia and inflammation. CONCLUSIONS: Together, human and mouse studies reveal novel mechanisms of hypoxia adaptation and potential therapeutic approaches for counteracting hypoxia-induced tissue damage.


Assuntos
Proteínas Quinases Ativadas por AMP/sangue , Adaptação Fisiológica/fisiologia , Doença da Altitude/sangue , Eritrócitos/metabolismo , Receptor A2B de Adenosina/sangue , 2,3-Difosfoglicerato/sangue , 5'-Nucleotidase/sangue , 5'-Nucleotidase/deficiência , Lesão Pulmonar Aguda/fisiopatologia , Adenosina/sangue , Adulto , Doença da Altitude/enzimologia , Doença da Altitude/fisiopatologia , Animais , Bisfosfoglicerato Mutase/sangue , Ativação Enzimática , Proteínas Ligadas por GPI/sangue , Humanos , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigênio/sangue , Fosforilação , Processamento de Proteína Pós-Traducional
2.
Nat Commun ; 8: 14108, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28169986

RESUMO

Faster acclimatization to high altitude upon re-ascent is seen in humans; however, the molecular basis for this enhanced adaptive response is unknown. We report that in healthy lowlanders, plasma adenosine levels are rapidly induced by initial ascent to high altitude and achieved even higher levels upon re-ascent, a feature that is positively associated with quicker acclimatization. Erythrocyte equilibrative nucleoside transporter 1 (eENT1) levels are reduced in humans at high altitude and in mice under hypoxia. eENT1 deletion allows rapid accumulation of plasma adenosine to counteract hypoxic tissue damage in mice. Adenosine signalling via erythrocyte ADORA2B induces PKA phosphorylation, ubiquitination and proteasomal degradation of eENT1. Reduced eENT1 resulting from initial hypoxia is maintained upon re-ascent in humans or re-exposure to hypoxia in mice and accounts for erythrocyte hypoxic memory and faster acclimatization. Our findings suggest that targeting identified purinergic-signalling network would enhance the hypoxia adenosine response to counteract hypoxia-induced maladaptation.


Assuntos
Aclimatação/fisiologia , Adenosina/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Eritrócitos/fisiologia , Hipóxia/fisiopatologia , Receptor A2B de Adenosina/metabolismo , 5'-Nucleotidase/sangue , 5'-Nucleotidase/metabolismo , Adenosina/sangue , Adulto , Altitude , Doença da Altitude/sangue , Doença da Altitude/fisiopatologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/sangue , Transportador Equilibrativo 1 de Nucleosídeo/genética , Feminino , Proteínas Ligadas por GPI/sangue , Proteínas Ligadas por GPI/metabolismo , Voluntários Saudáveis , Humanos , Hipóxia/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigênio/metabolismo , Fosforilação , Receptor A2B de Adenosina/genética , Transdução de Sinais/fisiologia , Ubiquitinação , Adulto Jovem
3.
Nat Commun ; 7: 12086, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27417539

RESUMO

Sphingosine-1-phosphate (S1P) is a bioactive signalling lipid highly enriched in mature erythrocytes, with unknown functions pertaining to erythrocyte physiology. Here by employing nonbiased high-throughput metabolomic profiling, we show that erythrocyte S1P levels rapidly increase in 21 healthy lowland volunteers at 5,260 m altitude on day 1 and continue increasing to 16 days with concurrently elevated erythrocyte sphingonisne kinase 1 (Sphk1) activity and haemoglobin (Hb) oxygen (O2) release capacity. Mouse genetic studies show that elevated erythrocyte Sphk1-induced S1P protects against tissue hypoxia by inducing O2 release. Mechanistically, we show that intracellular S1P promotes deoxygenated Hb anchoring to the membrane, enhances the release of membrane-bound glycolytic enzymes to the cytosol, induces glycolysis and thus the production of 2,3-bisphosphoglycerate (2,3-BPG), an erythrocyte-specific glycolytic intermediate, which facilitates O2 release. Altogether, we reveal S1P as an intracellular hypoxia-responsive biolipid promoting erythrocyte glycolysis, O2 delivery and thus new therapeutic opportunities to counteract tissue hypoxia.


Assuntos
Doença da Altitude/metabolismo , Eritrócitos/metabolismo , Lisofosfolipídeos/sangue , Oxigênio/sangue , Esfingosina/análogos & derivados , 2,3-Difosfoglicerato/metabolismo , Adaptação Fisiológica , Adulto , Animais , Feminino , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Glicólise , Humanos , Hipóxia/metabolismo , Lisofosfolipídeos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Oxigênio/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/sangue , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Esfingosina/sangue , Esfingosina/metabolismo
4.
PLoS One ; 9(3): e92191, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24658407

RESUMO

An understanding of human responses to hypoxia is important for the health of millions of people worldwide who visit, live, or work in the hypoxic environment encountered at high altitudes. In spite of dozens of studies over the last 100 years, the basic mechanisms controlling acclimatization to hypoxia remain largely unknown. The AltitudeOmics project aimed to bridge this gap. Our goals were 1) to describe a phenotype for successful acclimatization and assess its retention and 2) use these findings as a foundation for companion mechanistic studies. Our approach was to characterize acclimatization by measuring changes in arterial oxygenation and hemoglobin concentration [Hb], acute mountain sickness (AMS), cognitive function, and exercise performance in 21 subjects as they acclimatized to 5260 m over 16 days. We then focused on the retention of acclimatization by having subjects reascend to 5260 m after either 7 (n = 14) or 21 (n = 7) days at 1525 m. At 16 days at 5260 m we observed: 1) increases in arterial oxygenation and [Hb] (compared to acute hypoxia: PaO2 rose 9±4 mmHg to 45±4 while PaCO2 dropped a further 6±3 mmHg to 21±3, and [Hb] rose 1.8±0.7 g/dL to 16±2 g/dL; 2) no AMS; 3) improved cognitive function; and 4) improved exercise performance by 8±8% (all changes p<0.01). Upon reascent, we observed retention of arterial oxygenation but not [Hb], protection from AMS, retention of exercise performance, less retention of cognitive function; and noted that some of these effects lasted for 21 days. Taken together, these findings reveal new information about retention of acclimatization, and can be used as a physiological foundation to explore the molecular mechanisms of acclimatization and its retention.


Assuntos
Aclimatação/fisiologia , Doença da Altitude/fisiopatologia , Altitude , Gasometria , Cognição/fisiologia , Teste de Esforço , Feminino , Hemoglobinas/metabolismo , Humanos , Hipóxia/fisiopatologia , Masculino , Oxigênio/sangue , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa