Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 89(11): 7913-7926, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38778786

RESUMO

A one-pot procedure for the oxidative amidation of aldehydes via the in situ generation of reactive nitrile imine (NI) intermediates has been developed. Distinct from our progenitor processes, mechanistic and control experiments revealed that the NI undergoes rapid oxidation to an acyl diazene species, which then facilitates N-acylation of an amine. A range of substrates have been explored, including application in the synthesis of pharmaceutically relevant compounds.

2.
Comput Struct Biotechnol J ; 23: 2345-2357, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38867721

RESUMO

The formulation of high-concentration monoclonal antibody (mAb) solutions in low dose volumes for autoinjector devices poses challenges in manufacturability and patient administration due to elevated solution viscosity. Often many therapeutically potent mAbs are discovered, but their commercial development is stalled by unfavourable developability challenges. In this work, we present a systematic experimental framework for the computational screening of molecular descriptors to guide the design of 24 mutants with modified viscosity profiles accompanied by experimental evaluation. Our experimental observations using a model anti-IL8 mAb and eight engineered mutant variants reveal that viscosity reduction is influenced by the location of hydrophobic interactions, while targeting positively charged patches significantly increases viscosity in comparison to wild-type anti-IL-8 mAb. We conclude that most predicted in silico physicochemical properties exhibit poor correlation with measured experimental parameters for antibodies with suboptimal developability characteristics, emphasizing the need for comprehensive case-by-case evaluation of mAbs. This framework combining molecular design and triage via computational predictions with experimental evaluation aids the agile and rational design of mAbs with tailored solution viscosities, ensuring improved manufacturability and patient convenience in self-administration scenarios.

3.
ACS Pharmacol Transl Sci ; 7(8): 2439-2451, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39144567

RESUMO

Immunoglobulin G 3 (IgG3) monoclonal antibodies (mAbs) are high-value scaffolds for developing novel therapies. Despite their wide-ranging therapeutic potential, IgG3 physicochemical properties and developability characteristics remain largely under-characterized. Protein-protein interactions elevate solution viscosity in high-concentration formulations, impacting physicochemical stability, manufacturability, and the injectability of mAbs. Therefore, in this manuscript, the key molecular descriptors and biophysical properties of a model anti-IL-8 IgG1 and its IgG3 ortholog are characterized. A computational and experimental framework was applied to measure molecular descriptors impacting their downstream developability. Findings from this approach underpin a detailed understanding of the molecular characteristics of IgG3 mAbs as potential therapeutic entities. This work is the first report examining the manufacturability of IgG3 for high-concentration mAb formulations. While poorer conformational and colloidal stability and elevated solution viscosity were observed for IgG3, future efforts controlling surface potential through sequence-engineering of solvent-accessible patches can be used to improve biophysical parameters that dictate mAb developability.

4.
ACS Med Chem Lett ; 14(12): 1800-1806, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38116409

RESUMO

The androgen receptor (AR) is central to prostate cancer pathogenesis and has been extensively validated as a drug target. However, small-molecule anti-androgen therapies remain limited due to resistance and will eventually fail to suppress tumor growth, resulting in progression to castration-resistant prostate cancer (CRPC). The intrinsically disordered N-terminal domain (NTD) is crucial for AR transactivation and has been investigated as a suitable target in the presence of ligand binding domain mutations. A screening campaign identified biaryl isoxazole compound 7 as a weak inhibitor of the AR NTD. A library of biaryl analogues were synthesized, and their biological activities were assessed in a VCaP cell-based luciferase reporter gene assay. A structure-activity relationship (SAR) study revealed that indazole analogue 16 exhibited increased potency and favorable physicochemical properties with a benchmarked pharmacokinetic profile, providing a suitable starting point for further optimization of 16 as a CRPC therapeutic in the presence of AR mutations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa