Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Nature ; 564(7734): 59-63, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30405236

RESUMO

Abiotic hydrocarbons and carboxylic acids are known to be formed on Earth, notably during the hydrothermal alteration of mantle rocks. Although the abiotic formation of amino acids has been predicted both from experimental studies and thermodynamic calculations, its occurrence has not been demonstrated in terrestrial settings. Here, using a multimodal approach that combines high-resolution imaging techniques, we obtain evidence for the occurrence of aromatic amino acids formed abiotically and subsequently preserved at depth beneath the Atlantis Massif (Mid-Atlantic Ridge). These aromatic amino acids may have been formed through Friedel-Crafts reactions catalysed by an iron-rich saponite clay during a late alteration stage of the massif serpentinites. Demonstrating the potential of fluid-rock interactions in the oceanic lithosphere to generate amino acids abiotically gives credence to the hydrothermal theory for the origin of life, and may shed light on ancient metabolisms and the functioning of the present-day deep biosphere.


Assuntos
Modelos Químicos , Origem da Vida , Triptofano/análise , Triptofano/síntese química , Silicatos de Alumínio/química , Oceano Atlântico , Argila/química , Evolução Química , Fluorescência , Ferro/química
2.
Langmuir ; 39(12): 4291-4303, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36930733

RESUMO

Microparticles of polyethylene and polypropylene are largely found in aquatic environments because they are the most produced and persistent plastic materials. Once in biological media, they are covered by a layer of molecules, the so-called corona, mostly composed of proteins. A yeast protein extract from Saccharomyces cerevisiae was used as a protein system to observe interactions in complex biological media. Proteins, acting as surfactants and providing hydrophilic surfaces, allow the dispersion of highly hydrophobic particles in water and stabilize them. After 24 h, the microplastic quantity was up to 1 × 1011 particles per liter, whereas without protein, no particles remained in solution. Label-free imaging of the protein corona by synchrotron radiation deep UV fluorescence microscopy (SR-DUV) was performed. In situ images of the protein corona were obtained, and the adsorbed protein quantity, the coverage rate, and the corona heterogeneity were determined. The stability kinetics of the microplastic suspensions were measured by light transmission using a Turbiscan analyzer. Together, the microscopic and kinetics results demonstrate that the protein corona can very efficiently stabilize microplastics in solution provided that the protein corona quality is sufficient. Microplastic stability depends on different parameters such as the particle's intrinsic properties (size, density, hydrophobicity) and the protein corona formation that changes the particle wettability, electrostatic charge, and steric hindrance. By controlling these parameters with proteins, it becomes possible to keep microplastics in and out of solution, paving the way for applications in the field of microplastic pollution control and remediation.


Assuntos
Coroa de Proteína , Poluentes Químicos da Água , Microplásticos/química , Plásticos , Coroa de Proteína/química , Polipropilenos , Água , Poluentes Químicos da Água/química
3.
Biol Cell ; 114(3): 91-103, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34964145

RESUMO

BACKGROUND INFORMATION: Duchenne muscular dystrophy (DMD) is a neuromuscular disease caused by mutations in the gene encoding dystrophin. It leads to repeated cycles of muscle fiber necrosis and regeneration and progressive replacement of fibers by fibrotic and adipose tissue, with consequent muscle weakness and premature death. Fibrosis and, in particular, collagen accumulation are important pathological features of dystrophic muscle. A better understanding of the development of fibrosis is crucial to enable better management of DMD. Three-dimensional (3D) characterization of collagen organization by second harmonic generation (SHG) microscopy has already proven a highly informative means of studying the fibrotic network in tissue. RESULTS: Here, we combine for the first-time tissue clearing with SHG microscopy to characterize in depth the 3D cardiac fibrosis network from DMDmdx rat model. Heart sections (1-mm-thick) from 1-year-old wild-type (WT) and DMDmdx rats were cleared using the CUBIC protocol. SHG microscopy revealed significantly greater collagen deposition in DMDmdx versus WT sections. Analyses revealed a specific pattern of SHG+ segmented objects in DMDmdx cardiac muscle, characterized by a less elongated shape and increased density. Compared with the observed alignment of SHG+ collagen fibers in WT rats, profound fiber disorganization was observed in DMDmdx rats, in which we observed two distinct SHG+ collagen fiber profiles, which may reflect two distinct stages of the fibrotic process in DMD. CONCLUSION AND SIGNIFICANCE: The current work highlights the interest to combine multiphoton SHG microscopy and tissue clearing for 3D fibrosis network characterization in label free organ. It could be a relevant tool to characterize the fibrotic tissue remodeling in relation to the disease progression and/or to evaluate the efficacy of therapeutic strategies in preclinical studies in DMD model or others fibrosis-related cardiomyopathies diseases.


Assuntos
Distrofia Muscular de Duchenne , Animais , Modelos Animais de Doenças , Matriz Extracelular , Fibrose , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Ratos
4.
J Biol Chem ; 297(1): 100885, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34146545

RESUMO

PB1-F2 is a virulence factor of influenza A virus known to increase viral pathogenicity in mammalian hosts. PB1-F2 is an intrinsically disordered protein displaying a propensity to form amyloid-like fibers. However, the correlation between PB1-F2 structures and the resulting inflammatory response is unknown. Here, we used synchrotron-coupled Fourier transform-IR and deep UV microscopies to determine the presence of PB1-F2 fibers in influenza A virus-infected mice. In order to study the correlation between PB1-F2 structure and the inflammatory response, transgenic mice expressing luciferase under the control of an NF-κB promotor, allowing in vivo monitoring of inflammation, were intranasally instilled with monomeric, fibrillated, or truncated forms of recombinant PB1-F2. Our intravital NF-κB imaging, supported by cytokine quantification, clearly shows the proinflammatory effect of PB1-F2 fibers compared with N-terminal region of PB1-F2 unable to fibrillate. It is noteworthy that instillation of monomeric PB1-F2 of H5N1 virus induced a stronger inflammatory response when compared with prefibrillated PB1-F2 of H1N1 virus, suggesting mechanisms of virulence depending on PB1-F2 sequence. Finally, using whole-body plethysmography to measure volume changes in the lungs, we quantified the effects of the different forms of PB1-F2 on respiratory parameters. Thus, we conclude that PB1-F2-induced inflammation and respiratory distress are tightly correlated with sequence polymorphism and oligomerization status of the protein.


Assuntos
Infecções por Orthomyxoviridae/metabolismo , Multimerização Proteica , Respiração , Transdução de Sinais , Proteínas Virais/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Feminino , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Luciferases/genética , Luciferases/metabolismo , Pulmão/metabolismo , Pulmão/fisiopatologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Infecções por Orthomyxoviridae/fisiopatologia , Infecções por Orthomyxoviridae/virologia , Polimorfismo Genético , Regiões Promotoras Genéticas , Proteínas Virais/genética
5.
J Synchrotron Radiat ; 29(Pt 1): 214-223, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985438

RESUMO

Renal oxalosis is a rare cause of renal failure whose diagnosis can be challenging. Synchrotron deep ultraviolet (UV) fluorescence was assayed to improve oxalosis detection on kidney biopsies spatial resolution and sensitivity compared with the Fourier transform infrared microspectroscopy gold standard. The fluorescence spectrum of synthetic mono-, di- and tri-hydrated calcium oxalate was investigated using a microspectrometer coupled to the synchrotron UV beamline DISCO, Synchrotron SOLEIL, France. The obtained spectra were used to detect oxalocalcic crystals in a case control study of 42 human kidney biopsies including 19 renal oxalosis due to primary (PHO, n = 11) and secondary hyperoxaluria (SHO, n = 8), seven samples from PHO patients who received combined kidney and liver transplants, and 16 controls. For all oxalocalcic hydrates samples, a fluorescence signal is detected at 420 nm. These spectra were used to identify standard oxalocalcic crystals in patients with PHO or SHO. They also revealed micrometric crystallites as well as non-aggregated oxalate accumulation in tubular cells. A nine-points histological score was established for the diagnosis of renal oxalosis with 100% specificity (76-100) and a 73% sensitivity (43-90). Oxalate tubular accumulation and higher histological score were correlated to lower estimated glomerular filtration rate and higher urinary oxalate over creatinine ratio.


Assuntos
Oxalato de Cálcio , Síncrotrons , Estudos de Casos e Controles , Humanos , Rim/diagnóstico por imagem , Microscopia de Fluorescência
6.
J Struct Biol ; 211(1): 107497, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32220629

RESUMO

Molluscs, the largest marine phylum, display extraordinary shell diversity and sophisticated biomineral architectures. However, mineral-associated biomolecules involved in biomineralization are still poorly characterised. We report the first comprehensive structural and biomolecular study of Spondylus gaederopus, a pectinoid bivalve with a peculiar shell texture. Used since prehistoric times, this is the best-known shell of Europe's cultural heritage. We find that Spondylus microstructure is very poor in mineral-bound organics, which are mostly intercrystalline and concentrated at the interface between structural layers. Using high-resolution liquid chromatography tandem mass spectrometry (LC-MS/MS) we characterized several shell protein fractions, isolated following different bleaching treatments. Several peptides were identified as well as six shell proteins, which display features and domains typically found in biomineralized tissues, including the prevalence of intrinsically disordered regions. It is very likely that these sequences only partially represent the full proteome of Spondylus, considering the lack of genomics data for this genus and the fact that most of the reconstructed peptides do not match with any known shell proteins, representing consequently lineage-specific sequences. This work sheds light onto the shell matrix involved in the biomineralization in spondylids. Our proteomics data suggest that Spondylus has evolved a shell-forming toolkit, distinct from that of other better studied pectinoids - fine-tuned to produce shell structures with high mechanical properties, while limited in organic content. This study therefore represents an important milestone for future studies on biomineralized skeletons and provides the first reference dataset for forthcoming molecular studies of Spondylus archaeological artifacts.


Assuntos
Exoesqueleto/ultraestrutura , Calcificação Fisiológica/genética , Ostreidae/ultraestrutura , Proteoma/genética , Exoesqueleto/metabolismo , Animais , Minerais/metabolismo , Ostreidae/genética , Ostreidae/fisiologia
7.
J Synchrotron Radiat ; 27(Pt 3): 772-778, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32381780

RESUMO

A lipid droplet (LD) core of a cell consists mainly of neutral lipids, triacylglycerols and/or steryl esters (SEs). The structuration of these lipids inside the core is still under debate. Lipid segregation inside LDs has been observed but is sometimes suggested to be an artefact of LD isolation and chemical fixation. LD imaging in their native state and in unaltered cellular environments appears essential to overcome these possible technical pitfalls. Here, imaging techniques for ultrastructural study of native LDs in cellulo are provided and it is shown that LDs are organized structures. Cryo soft X-ray tomography and deep-ultraviolet (DUV) transmittance imaging are showing a partitioning of SEs at the periphery of the LD core. Furthermore, DUV transmittance and tryptophan/tyrosine auto-fluorescence imaging on living cells are combined to obtain complementary information on cell chemical contents. This multimodal approach paves the way for a new label-free organelle imaging technique in living cells.


Assuntos
Gotículas Lipídicas/química , Gotículas Lipídicas/ultraestrutura , Imagem Multimodal , Microscopia Crioeletrônica , Saccharomyces cerevisiae , Síncrotrons , Triglicerídeos/química
8.
Anal Bioanal Chem ; 412(26): 7049-7061, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32839857

RESUMO

Fourier transform infrared (FTIR) spectroscopy has proven to be a non-invasive tool to analyse cells without the hurdle of employing exogenous dyes or probes. Nevertheless, the study of single live bacteria in their aqueous environment has long remained a big challenge, due to the strong infrared absorption of water and the small size of bacteria compared to the micron-range infrared wavelengths of the probing photons. To record infrared spectra of bacteria in an aqueous environment, at different spatial resolutions, two setups were developed. A custom-built attenuated total reflection inverted microscope was coupled to a synchrotron-based FTIR spectrometer, using a germanium hemisphere. With such a setup, a projected spot size of 1 × 1 µm2 was achieved, which allowed spectral acquisition at the single-cell level in the 1800-1300 cm-1 region. The second setup used a demountable liquid micro-chamber with a thermal source-powered FTIR microscope, in transmission geometry, for probing clusters of a few thousands of live cells in the mid-IR region (4000-975 cm-1). Both setups were applied for studying two strains of a model lactic acid bacterium exhibiting different cryo-resistances. The two approaches allowed the discrimination of both strains and revealed population heterogeneity among bacteria at different spatial resolutions. The multivariate analysis of spectra indicated that the cryo-sensitive cells presented the highest cell heterogeneity and the highest content of proteins with the α-helix structure. Furthermore, the results from clusters of bacterial cells evidenced phosphate and peptidoglycan vibrational bands associated with the cell envelope, as potential markers of resistance to environmental conditions. Graphical Abstract.


Assuntos
Bactérias/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Síncrotrons , Bactérias/efeitos da radiação
9.
J Biol Chem ; 291(17): 9060-72, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26896002

RESUMO

PB1-F2 is a virulence factor of influenza A virus (IAV) whose functions remain misunderstood. The different roles of PB1-F2 may be linked to its structural polymorphism and to its propensity to assemble into oligomers and amyloid fibers in the vicinity of the membrane of IAV-infected cells. Here, we monitored the impact of PB1-F2 on the biochemical composition and protein structures of human epithelial pulmonary cells (A549) and monocytic cells (U937) upon IAV infection using synchrotron Fourier-transform infrared (FTIR) and deep UV (DUV) microscopies at the single-cell level. Cells were infected with a wild-type IAV and its PB1-F2 knock-out mutant for analyses at different times post-infection. IR spectra were recorded in each condition and processed to evaluate the change in the component band of the spectra corresponding to the amide I (secondary structure) and the CH stretching region (membrane). The IR spectra analysis revealed that expression of PB1-F2 in U937 cells, but not in A549 cells, results in the presence of a specific ß-aggregate signature. Furthermore, the lipid membrane composition of U937 cells expressing PB1-F2 was also altered in a cell type-dependent manner. Using DUV microscopy and taking advantage of the high content of tryptophan residues in the sequence of PB1-F2 (5/90 aa), we showed that the increase of the autofluorescent signal recorded in monocytic cells could be correlated with the IR detection of ß-aggregates. Altogether, our results constitute an important step forward in the understanding of the cell type-dependent function of PB1-F2.


Assuntos
Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Humana/metabolismo , Agregados Proteicos , Proteínas Virais/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/virologia , Células HeLa , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/genética , Microscopia de Fluorescência , Células U937 , Proteínas Virais/genética
10.
Appl Microbiol Biotechnol ; 101(18): 6907-6917, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28780605

RESUMO

Cryopreservation of lactic acid bacteria may lead to undesirable cell death and functionality losses. The membrane is the first target for cell injury and plays a key role in bacterial cryotolerance. This work aimed at investigating at a subcellular resolution the membrane fluidity of two populations of Lactobacillus delbrueckii subsp. bulgaricus when subjected to cold and osmotic stresses associated to freezing. Cells were cultivated at 42 °C in mild whey medium, and they were exposed to sucrose solutions of different osmolarities (300 and 1800 mOsm L-1) after harvest. Synchrotron fluorescence microscopy was used to measure membrane fluidity of cells labeled with the cytoplasmic membrane probe 1-[4 (trimethylamino) phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH). Images were acquired at 25 and 0 °C, and more than a thousand cells were individually analyzed. Results revealed that a bacterial population characterized by high membrane fluidity and a homogeneous distribution of fluidity values appeared to be positively related to freeze-thaw resistance. Furthermore, rigid domains with different anisotropy values were observed and the occurrence of these domains was more important in the freeze-sensitive bacterial population. The freeze-sensitive cells exhibited a broadening of existing highly rigid lipid domains with osmotic stress. The enlargement of domains might be ascribed to the interaction of sucrose with membrane phospholipids, leading to membrane disorganization and cell degradation.


Assuntos
Lactobacillus delbrueckii/fisiologia , Fluidez de Membrana/fisiologia , Fosfolipídeos/metabolismo , Sacarose/metabolismo , Membrana Celular/fisiologia , Criopreservação , Congelamento , Microscopia de Fluorescência , Pressão Osmótica
11.
Phys Chem Chem Phys ; 18(22): 14874-85, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27191014

RESUMO

Water-solid interactions at the macroscopic level (beyond tens of nanometers) are often viewed as the coexistence of two bulk phases with a sharp interface in many areas spanning from biology to (geo)chemistry and various technological fields (membranes, microfluidics, coatings, etc.). Here we present experimental evidence indicating that such a view may be a significant oversimplification. High-resolution infrared and Raman experiments were performed in a 60 × 20 µm(2) quartz cavity, synthetically created and initially filled with demineralized water. The IR mapping (3 × 3 µm(2) beam size) performed using the SOLEIL synchrotron radiation source displays two important features: (i) the presence of a dangling free-OH component, a signature of hydrophobic inner walls; (ii) a shift of the OH-stretching band which essentially makes the 3200 cm(-1) sub-band predominate over the usual main component at around 3400 cm(-1). Raman maps confirmed these signatures (though less marked than IR's) and afforded a refined spatial distribution of this interfacial signal. This spatial resolution, statistically treated, results in a puzzling image of a 1-3 µm thick marked-liquid layer along the entire liquid-solid interface. The common view is then challenged by this strong evidence that a µm-thick layer analogous to an interphase forms at the solid-liquid interface. The thermodynamic counterpart of the vibrational shifts amounts to around +1 kJ mol(-1) at the interface with a rapidly decreasing signature towards the cavity centre, meaning that vicinal water may form a reactive layer, of micrometer thickness, expected to have an elevated melting point, a depressed boiling temperature, and enhanced solvent properties.

12.
Analyst ; 140(17): 5920-8, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26212688

RESUMO

Freezing is widely used for preserving different types of cells. Frozen concentrates of lactic acid bacteria (LAB) are extensively used for manufacturing food, probiotic products and for green chemistry and medical applications. However, the freezing and thawing processes cause cell injuries that result in significant cell death. Producing homogeneous bacterial populations with high cryotolerance remains a real challenge. Our objective was to investigate the biochemical and physiological changes in a LAB model at the cell scale following fermentation and freezing in order to identify cellular biomarkers of cryotolerance. Infrared spectra of individual bacteria produced by applying different fermentation and freezing conditions were acquired using synchrotron radiation-based Fourier-transform infrared (SR-FTIR) microspectroscopy to achieve sub-cellular spatial resolution. Fluorescent microscopy was concomitantly assessed, thus making possible to simultaneously analyse the biochemistry and physiological state of a single cell for the first time. Principal component analysis was used to evaluate changes in cell composition, with particular focus on lipids, proteins and polysaccharides. SR-FTIR results indicated that before freezing, freeze-resistant cells grown in a rich medium presented a high content of CH3 groups from lipid chains, of cell proteins in an α-helix secondary structure and of charged polymers such as teichoic and lipoteichoic acids that constitute the Gram-positive bacterial wall. Moreover, SR-FTIR microspectroscopy made it possible to reveal cell heterogeneity within the cluster of resistant cells, which was ascribed to the diversity of potential substrates in the growth medium. Freezing and thawing processes induced losses of membrane integrity and cell viability in more than 90% of the freeze-sensitive bacterial population. These damages leading to cell death were ascribed to biochemical modification of cell membrane phospholipids, in particular a rigidification of the cytoplasmic membrane following freezing. Furthermore the freeze-resistant cells remained viable after freezing and thawing but a modification of protein secondary structure was detected by SR-FTIR analysis. These results highlighted the potential application of bimodal analysis by SR-FTIR and fluorescence microscopy to increase our knowledge about mechanisms related to cell damage.


Assuntos
Lactobacillus/fisiologia , Microscopia de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Corantes Fluorescentes/química , Congelamento , Lactobacillus/química , Lactobacillus/crescimento & desenvolvimento , Análise de Componente Principal , Compostos de Selênio/química , Compostos de Zinco/química
13.
Analyst ; 140(12): 4189-96, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25912941

RESUMO

The rat skeletal muscle consists of four pure types of muscle cells called type I, type IIA, type IIX and type IIB, and their hybrids in different proportions. They differ in their contraction speeds and metabolic pathways. The intracellular composition is adapted to the fibre function and therefore to fibre types. Given that small differences in composition are likely to alter the optical properties of the cells, we studied the impact of the cell type on the fluorescence response following excitation in the deep UV region. Rat soleus and extensor digitorum longus (EDL) muscle fibres, previously identified based on their cell types by immunohistofluorescence analysis, were analyzed by synchrotron fluorescence microspectroscopy on stain-free serial muscle cross-sections. Muscle fibres excited at 275 nm showed differences in the fluorescence emission intensity among fibre types at 302, 325, 346 and 410 nm. The 410/325 ratio decreased significantly with contractile and metabolic features in EDL muscle, in the order of I > IIA > IIX > IIB fibres (p < 0.01). Compared to type I fibres, the 346/302 ratio of IIA fibres decreased significantly in both EDL and soleus muscles (p < 0.01). This study highlights the usefulness of autofluorescence spectral signals to characterize histological cross-sections of muscle fibres with no staining chemicals.


Assuntos
Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/efeitos da radiação , Raios Ultravioleta , Animais , Masculino , Ratos , Ratos Wistar , Espectrometria de Fluorescência
14.
Analyst ; 139(19): 4879-86, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25068149

RESUMO

For decades, the origin of the concentric ring pattern of bacterial swarming colonies has puzzled microbiologists. It was hypothesized that a periodic water activity variation originates a phase transition within the extracellular matrix water H bond network, which switches on and off the exopolysaccharide auto-organization. Both rheological and infrared spectroscopy measurements respectively performed at a molecular scale and on a currently migrating colony, have given a physical insight into the mechanisms which underlie the switch between swarming and consolidation phases. Thanks to in situ and real time infrared microspectroscopy, and thanks to the brilliance of the infrared beam at SOLEIL synchrotron, here we demonstrate that Proteus mirabilis swarming is triggered by a periodic variation of water activity at the colony edge. A dynamic behavior emerges from the global properties of the multicellular entity which relies on the ability of the bacterial cells to tune exoproduct synthesis in order to undergo sharp transitions at a given water activity threshold.


Assuntos
Matriz Extracelular/metabolismo , Polissacarídeos Bacterianos/metabolismo , Proteus mirabilis/metabolismo , Espectrofotometria Infravermelho , Ligação de Hidrogênio , Microscopia de Polarização , Polissacarídeos Bacterianos/química , Análise de Componente Principal , Reologia , Água/química
15.
Analyst ; 139(11): 2663-7, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24752785

RESUMO

Fibrillar distribution in the rat tail tendon and mice liver can be measured using optical methods. Two-photon excitation provides easy assessment of fibrotic collagen types I and II. Single photon deep ultraviolet (DUV) excitation imaging highlights all collagen types without discrimination. Their combination on the same tissue area provides a better overview of collagens in fibrillar diseases.


Assuntos
Microscopia/métodos , Raios Ultravioleta , Fótons
16.
Biol Cell ; 105(7): 277-88, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23517500

RESUMO

BACKGROUND INFORMATION: Autofluorescence spectroscopy is a powerful tool for molecular histology and for following metabolic processes in biological samples as it does not require labelling. However, at the microscopic scale, it is mostly limited to visible and near infrared excitation of the samples. Several interesting and naturally occurring fluorophores can be excited in the UV and deep UV (DUV), but cannot be monitored in cellulo nor in vivo due to a lack of available microscopic instruments working in this wavelength range. To fulfil this need, we have developed a synchrotron-coupled DUV microspectrofluorimeter which is operational since 2010. An extended selection of endogenous autofluorescent probes that can be excited in DUV, including their spectral characteristics, is presented. The distribution of the probes in various biological samples, including cultured cells, soft tissues, bone sections and maize stems, is shown to illustrate the possibilities offered by this system. In this work we demonstrate that DUV autofluorescence is a powerful tool for tissue histology and cell biology. RESULTS: To fulfil this need, we have developed a synchrotron-coupled DUV microspectrofluorimeter which is operational since 2010. An extended selection of endogenous autofluorescent probes that can be excited in DUV, including their spectral characteristics, is presented. The distribution of the probes in various biological samples, including cultured cells, soft tissues, bone sections and maize stems, is shown to illustrate the possibilities offered by this system. In this work we demonstrate that DUV autofluorescence is a powerful tool for tissue histology and cell biology. CONCLUSIONS: In this work we demonstrate that DUV autofluorescence is a powerful tool for tissue histology and cell biology.


Assuntos
Osso e Ossos/citologia , Técnicas Citológicas , Técnicas Histológicas , Microscopia de Fluorescência/métodos , Células-Tronco/citologia , Zea mays/citologia , Animais , Biologia Celular/instrumentação , Células HeLa , Histologia/instrumentação , Humanos , Microscopia de Fluorescência/instrumentação , Osteócitos/citologia , Ratos , Raios Ultravioleta
17.
J Colloid Interface Sci ; 668: 252-263, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38678881

RESUMO

Protein body (PB) formation in wheat seeds is a critical process influencing seed content and nutritional quality. In this study, we investigate the potential mechanisms governing PB formation through an in vitro approach, focusing on γ-gliadin, a key wheat storage protein. We used a microfluidic technique to encapsulate γ-gliadin within giant unilamellar vesicles (GUVs) and tune the physicochemical conditions in a controlled and rapid way. We examined the influence of pH and protein concentration on LLPS and protein-membrane interactions using various microscopy and spectroscopy techniques. We showed that γ-gliadin encapsulated in GUVs can undergo a pH-triggered liquid-liquid phase separation (LLPS) by two distinct mechanisms depending on the γ-gliadin concentration. At low protein concentrations, γ-gliadins phase separate by a nucleation and growth-like process, while, at higher protein concentration and pH above 6.0, γ-gliadin formed a bi-continuous phase suggesting a spinodal decomposition-like mechanism. Fluorescence and microscopy data suggested that γ-gliadin dense phase exhibited affinity for the GUV membrane, forming a layer at the interface and affecting the reversibility of the phase separation.


Assuntos
Gliadina , Triticum , Lipossomas Unilamelares , Gliadina/química , Gliadina/isolamento & purificação , Triticum/química , Concentração de Íons de Hidrogênio , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , Água/química , Lipídeos de Membrana/química , Separação de Fases
18.
Anal Bioanal Chem ; 405(8): 2685-97, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23354575

RESUMO

The present work was focused on elucidating biochemical changes in the model bacterium Escherichia coli exposed to ionic silver mediated stress, at a single-cell scale. In order to achieve this, in situ synchrotron Fourier-transform infrared (sFTIR) microspectroscopy was performed, for the first time, on individual cells by attenuated total reflectance (ATR) combined with the use of zinc-selenide hemisphere for high spatial resolution. In a first part, the potential of the method was evaluated on bacteria subjected to a lethal 100 µM AgNO(3) concentration for 2 h compared to untreated 100 % viable cells. Differences in cell composition were assessed for the C-H stretching and protein spectral regions, indicating that the inhibitory action was targeted against both fatty acids and proteins. Transmission electron microscopy (TEM) confirmed morphological damages of the cell ultrastructure. The relevance of ATR-sFTIR microspectroscopy for highlighting the heterogeneity in Ag(+)-mediated effects within a given bacterial population was also pointed out. In a second part, cells were exposed to sub-lethal Ag(+) concentrations (<10 µM AgNO(3)) tested under "dynamic" growth mode: early addition vs. pulse in the mid-exponential phase, and compared to simultaneously batch-grown untreated bacteria or cells sampled just before the pulse, respectively. sFTIR microspectroscopy and TEM imaging were performed in close relation with growth kinetics characterization. No significant effect of the Ag(+) pulses was detected, in accordance with macrokinetics data. For early-treated cells, effects on fatty acid composition were shown, although no major alteration of protein secondary structure was noticed. These partial effects were consistent with TEM observations and growth kinetics.


Assuntos
Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Nitrato de Prata/farmacologia , Análise de Célula Única/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Escherichia coli/citologia , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Estresse Fisiológico/efeitos dos fármacos , Síncrotrons
19.
Sci Rep ; 13(1): 10808, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402811

RESUMO

Dystrophic muscle is characterized by necrosis/regeneration cycles, inflammation, and fibro-adipogenic development. Conventional histological stainings provide essential topographical data of this remodeling but may be limited to discriminate closely related pathophysiological contexts. They fail to mention microarchitecture changes linked to the nature and spatial distribution of tissue compartment components. We investigated whether label-free tissue autofluorescence revealed by Synchrotron deep ultraviolet (DUV) radiation could serve as an additional tool for monitoring dystrophic muscle remodeling. Using widefield microscopy with specific emission fluorescence filters and microspectroscopy defined by high spectral resolution, we analyzed samples from healthy dogs and two groups of dystrophic dogs: naïve (severely affected) and MuStem cell-transplanted (clinically stabilized) animals. Multivariate statistical analysis and machine learning approaches demonstrated that autofluorescence emitted at 420-480 nm by the Biceps femoris muscle effectively discriminates between healthy, dystrophic, and transplanted dog samples. Microspectroscopy showed that dystrophic dog muscle displays higher and lower autofluorescence due to collagen cross-linking and NADH respectively than that of healthy and transplanted dogs, defining biomarkers to evaluate the impact of cell transplantation. Our findings demonstrate that DUV radiation is a sensitive, label-free method to assess the histopathological status of dystrophic muscle using small amounts of tissue, with potential applications in regenerative medicine.


Assuntos
Distrofias Musculares , Animais , Cães , Algoritmo Florestas Aleatórias , Máquina de Vetores de Suporte , Distrofias Musculares/patologia , Distrofias Musculares/terapia , Raios Ultravioleta , Microespectrofotometria , Microscopia , Transplante de Células-Tronco , Masculino , Biópsia
20.
Int J Biol Macromol ; 245: 125488, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37353113

RESUMO

Model systems are needed to provide controlled environment for the understanding of complex phenomena. Interaction between polysaccharides and proteins in dense medium are involved in numerous complex systems such as biomass conversion or plant use for food processing or biobased materials. In this work, cellulose nanocrystals (CNCs) were used to study proteins in a dense and organized cellulosic environment. This environment was designed within microdroplets using a microfluidic setup, and applied to two proteins, bovine serum albumin (BSA) and a GH7 endoglucanase, relevant to food and plant science, respectively. The CNC at 56.5 g/L organized in liquid crystalline structure and the distribution of the proteins was probed using synchrotron deep-UV radiation. The proteins were homogeneously distributed throughout the volume, but BSA significantly disturbed the droplet global organization, preferring partition in hydrophilic external micelles. In contrast, GH7 partitioned with the CNCs showing stronger non-polar interaction but without disruption of the system organization. Such results pave the road for the development of more complex polysaccharides - proteins in-vitro models.


Assuntos
Celulose , Nanopartículas , Celulose/química , Polissacarídeos , Soroalbumina Bovina/química , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa