RESUMO
Preclinical mechanistic studies have pointed towards RNA interference-mediated off-target effects as a major driver of hepatotoxicity for GalNAc-siRNA conjugates. Here, we demonstrate that a single glycol nucleic acid or 2'-5'-RNA modification can substantially reduce small interfering RNA (siRNA) seed-mediated binding to off-target transcripts while maintaining on-target activity. In siRNAs with established hepatotoxicity driven by off-target effects, these novel designs with seed-pairing destabilization, termed enhanced stabilization chemistry plus (ESC+), demonstrated a substantially improved therapeutic window in rats. In contrast, siRNAs thermally destabilized to a similar extent by the incorporation of multiple DNA nucleotides in the seed region showed little to no improvement in rat safety suggesting that factors in addition to global thermodynamics play a role in off-target mitigation. We utilized the ESC+ strategy to improve the safety of ALN-HBV, which exhibited dose-dependent, transient and asymptomatic alanine aminotransferase elevations in healthy volunteers. The redesigned ALN-HBV02 (VIR-2218) showed improved specificity with comparable on-target activity and the program was reintroduced into clinical development.
Assuntos
RNA Interferente Pequeno , Animais , Ratos , RNA Interferente Pequeno/genéticaRESUMO
Chemical modifications are necessary to ensure the metabolic stability and efficacy of oligonucleotide-based therapeutics. Here, we describe analyses of the α-(l)-threofuranosyl nucleic acid (TNA) modification, which has a shorter 3'-2' internucleotide linkage than the natural DNA and RNA, in the context of small interfering RNAs (siRNAs). The TNA modification enhanced nuclease resistance more than 2'-O-methyl or 2'-fluoro ribose modifications. TNA-containing siRNAs were prepared as triantennary N-acetylgalactosamine conjugates and were tested in cultured cells and mice. With the exceptions of position 2 of the antisense strand and position 11 of the sense strand, the TNA modification did not inhibit the activity of the RNA interference machinery. In a rat toxicology study, TNA placed at position 7 of the antisense strand of the siRNA mitigated off-target effects, likely due to the decrease in the thermodynamic binding affinity relative to the 2'-O-methyl residue. Analysis of the crystal structure of an RNA octamer with a single TNA on each strand showed that the tetrose sugar adopts a C4'-exo pucker. Computational models of siRNA antisense strands containing TNA bound to Argonaute 2 suggest that TNA is well accommodated in the region kinked by the enzyme. The combined data indicate that the TNA nucleotides are promising modifications expected to increase the potency, duration of action, and safety of siRNAs.
Assuntos
Ácidos Nucleicos , Animais , Camundongos , Ratos , RNA Interferente Pequeno , Nucleotídeos , Interferência de RNA , AcetilgalactosaminaRESUMO
BACKGROUND & AIMS: Current therapy for chronic hepatitis B virus (cHBV) infection involves lifelong treatment. New treatments that enable HBV functional cure would represent a clinically meaningful advance. ALN-HBV and VIR-2218 are investigational RNA interference therapeutics that target all major HBV transcripts. METHODS: We report on: i) the safety of single doses of VIR-2218 (modified from ALN-HBV by enhanced stabilization chemistry plus technology to reduce off-target, seed-mediated binding while maintaining on-target antiviral activity) and ALN-HBV in humanized mice; ii) a cross-study comparison of the safety of single doses of VIR-2218 and ALN-HBV in healthy human volunteers (n = 24 and n = 49, respectively); and iii) the antiviral activity of two doses of 20, 50, 100, 200 mg of VIR-2218 (total n = 24) vs. placebo (n = 8), given 4 weeks apart, in participants with cHBV infection. RESULTS: In humanized mice, alanine aminotransferase (ALT) levels were markedly lower following administration of VIR-2218 compared with ALN-HBV. In healthy volunteers, post-treatment ALT elevations occurred in 28% of participants receiving ALN-HBV compared with none in those receiving VIR-2218. In participants with cHBV infection, VIR-2218 was associated with dose-dependent reductions in hepatitis B surface antigen (HBsAg). The greatest mean reduction of HBsAg at Week 20 in participants receiving 200 mg was 1.65 log IU/ml. The HBsAg reduction was maintained at 0.87 log IU/ml at Week 48. No participants had serum HBsAg loss or hepatitis B surface antibody seroconversion. CONCLUSIONS: VIR-2218 demonstrated an encouraging hepatic safety profile in preclinical and clinical studies as well as dose-dependent HBsAg reductions in patients with cHBV infection. These data support future studies with VIR-2218 as part of combination regimens with a goal of HBV functional cure. TRIAL REGISTRATION: ClinicalTrials.gov identifiers: NCT02826018 and NCT03672188. IMPACT AND IMPLICATIONS: A significant unmet need exists for therapies for chronic HBV (cHBV) infection that achieve functional cure. We report clinical and non-clinical data on two investigational small-interfering RNAs that target HBx, ALN-HBV and VIR-2218, demonstrating that incorporation of enhanced stabilization chemistry plus technology in VIR-2218 reduces its propensity to cause ALT elevations relative to its parent compound, ALN-HBV. We also show that VIR-2218 reduces hepatitis B surface antigen levels in a dose-dependent manner in participants with cHBV infection. These studies support the continued development of VIR-2218 as part of therapeutic regimens for cHBV infection, with the goal of a functional cure, and are important for HBV researchers and physicians.
Assuntos
Hepatite B Crônica , Hepatite B , Humanos , Animais , Camundongos , Hepatite B Crônica/tratamento farmacológico , Vírus da Hepatite B , Antígenos de Superfície da Hepatite B , Terapêutica com RNAi , Ensaios Clínicos Controlados Aleatórios como Assunto , Antivirais , DNA Viral , Antígenos E da Hepatite B , Hepatite B/tratamento farmacológicoRESUMO
We recently reported the synthesis of 2'-fluorinated Northern-methanocarbacyclic (2'-F-NMC) nucleotides, which are based on a bicyclo[3.1.0]hexane scaffold. Here, we analyzed RNAi-mediated gene silencing activity in cell culture and demonstrated that a single incorporation of 2'-F-NMC within the guide or passenger strand of the tri-N-acetylgalactosamine-conjugated siRNA targeting mouse Ttr was generally well tolerated. Exceptions were incorporation of 2'-F-NMC into the guide strand at positions 1 and 2, which resulted in a loss of the in vitro activity. Activity at position 1 was recovered when the guide strand was modified with a 5' phosphate, suggesting that the 2'-F-NMC is a poor substrate for 5' kinases. In mice, the 2'-F-NMC-modified siRNAs had comparable RNAi potencies to the parent siRNA. 2'-F-NMC residues in the guide seed region position 7 and at positions 10, 11 and 12 were well tolerated. Surprisingly, when the 5'-phosphate mimic 5'-(E)-vinylphosphonate was attached to the 2'-F-NMC at the position 1 of the guide strand, activity was considerably reduced. The steric constraints of the bicyclic 2'-F-NMC may impair formation of hydrogen-bonding interactions between the vinylphosphonate and the MID domain of Ago2. Molecular modeling studies explain the position- and conformation-dependent RNAi-mediated gene silencing activity of 2'-F-NMC. Finally, the 5'-triphosphate of 2'-F-NMC is not a substrate for mitochondrial RNA and DNA polymerases, indicating that metabolites should not be toxic.
Assuntos
Nucleotídeos/química , Interferência de RNA , RNA Interferente Pequeno/química , Animais , Proteínas Argonautas/química , Células COS , Células Cultivadas , Chlorocebus aethiops , DNA Polimerase gama/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Camundongos , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Compostos Organofosforados/síntese química , Compostos Organofosforados/química , Pré-Albumina/genética , Nucleotídeos de Pirimidina/síntese química , Nucleotídeos de Pirimidina/química , Uridina/análogos & derivadosRESUMO
Although 2'-deoxy-2'-α-F-2'-ß-C-methyl (2'-F/Me) uridine nucleoside derivatives are a successful class of antiviral drugs, this modification had not been studied in oligonucleotides. Herein, we demonstrate the facile synthesis of 2'-F/Me-modified pyrimidine phosphoramidites and their subsequent incorporation into oligonucleotides. Despite the C3'-endo preorganization of the parent nucleoside, a single incorporation into RNA or DNA resulted in significant thermal destabilization of a duplex due to unfavorable enthalpy, likely resulting from steric effects. When located at the terminus of an oligonucleotide, the 2'-F/Me modification imparted more resistance to degradation than the corresponding 2'-fluoro nucleotides. Small interfering RNAs (siRNAs) modified at certain positions with 2'-F/Me had similar or better silencing activity than the parent siRNAs when delivered via a lipid nanoparticle formulation or as a triantennary N-acetylgalactosamine conjugate in cells and in mice. Modification in the seed region of the antisense strand at position 6 or 7 resulted in an activity equivalent to the parent in mice. Additionally, placement of the antisense strand at position 7 mitigated seed-based off-target effects in cell-based assays. When the 2'-F/Me modification was combined with 5'-vinyl phosphonate, both E and Z isomers had silencing activity comparable to the parent. In combination with other 2'-modifications such as 2'-O-methyl, the Z isomer is detrimental to silencing activity. Presumably, the equivalence of 5'-vinyl phosphonate isomers in the context of 2'-F/Me is driven by the steric and conformational features of the C-methyl-containing sugar ring. These data indicate that 2'-F/Me nucleotides are promising tools for nucleic acid-based therapeutic applications to increase potency, duration, and safety.
Assuntos
Organofosfonatos , Nucleotídeos de Pirimidina , Animais , Lipossomos , Camundongos , Modelos Moleculares , Nanopartículas , Conformação de Ácido Nucleico , Nucleosídeos , Nucleotídeos , Oligonucleotídeos , Fosfatos , Interferência de RNA , RNA Interferente Pequeno/genéticaRESUMO
Conjugation of oligonucleotide therapeutics, including small interfering RNAs (siRNAs) or antisense oligonucleotides, to N-acetylgalactosamine (GalNAc) ligands has become the primary strategy for hepatocyte-targeted delivery, and with the recent approvals of GIVLAARI (givosiran) for the treatment of acute hepatic porphyria, OXLUMO (lumasiran) for the treatment of primary hyperoxaluria, and Leqvio (inclisiran) for the treatment of hypercholesterolemia, the technology has been well validated clinically. Although much knowledge has been gained over decades of development, there is a paucity of published literature on the drug metabolism and pharmacokinetic properties of GalNAc-siRNA. With this in mind, the goals of this minireview are to provide an aggregate analysis of these nonclinical absorption, distribution, metabolism, and excretion (ADME) data to build confidence on the translation of these properties to human. Upon subcutaneous administration, GalNAc-conjugated siRNAs are quickly distributed to the liver, resulting in plasma pharmacokinetic (PK) properties that reflect rapid elimination through asialoglycoprotein receptor-mediated uptake from circulation into hepatocytes. These studies confirm that liver PK, including half-life and, most importantly, siRNA levels in RNA-induced silencing complex in hepatocytes, are better predictors of pharmacodynamics (PD) than plasma PK. Several in vitro and in vivo nonclinical studies were conducted to characterize the ADME properties of GalNAc-conjugated siRNAs. These studies demonstrate that the PK/PD and ADME properties of GalNAc-conjugated siRNAs are highly conserved across species, are largely predictable, and can be accurately scaled to human, allowing us to identify efficacious and safe clinical dosing regimens in the absence of human liver PK profiles. SIGNIFICANCE STATEMENT: Several nonclinical ADME studies have been conducted in order to provide a comprehensive overview of the disposition and elimination of GalNAc-conjugated siRNAs and the pharmacokinetic/pharmacodynamic translation between species. These studies demonstrate that the ADME properties of GalNAc-conjugated siRNAs are well correlated and predictable across species, building confidence in the ability to extrapolate to human.
Assuntos
Acetilgalactosamina , Porfirias Hepáticas , Acetilgalactosamina/farmacocinética , Receptor de Asialoglicoproteína/metabolismo , Hepatócitos/metabolismo , Humanos , Porfirias Hepáticas/metabolismo , RNA Interferente Pequeno/genéticaRESUMO
In this report, we investigated the hexopyranose chemical modification Altriol Nucleic Acid (ANA) within small interfering RNA (siRNA) duplexes that were otherwise fully modified with the 2'-deoxy-2'-fluoro and 2'-O-methyl pentofuranose chemical modifications. The siRNAs were designed to silence the transthyretin (Ttr) gene and were conjugated to a trivalent N-acetylgalactosamine (GalNAc) ligand for targeted delivery to hepatocytes. Sense and antisense strands of the parent duplex were synthesized with single ANA residues at each position on the strand, and the resulting siRNAs were evaluated for their ability to inhibit Ttr mRNA expression in vitro. Although ANA residues were detrimental at the 5' end of the antisense strand, the siRNAs with ANA at position 6 or 7 in the seed region had activity comparable to the parent. The siRNA with ANA at position 7 in the seed region was active in a mouse model. An Oligonucleotide with ANA at the 5' end was more stable in the presence of 5'-exonuclease than an oligonucleotide of the same sequence and chemical composition without the ANA modification. Modeling studies provide insight into the origins of regiospecific changes in potency of siRNAs and the increased protection against 5'-exonuclease degradation afforded by the ANA modification.
Assuntos
Acetilgalactosamina/química , Carboidratos/química , Interferência de RNA , RNA Interferente Pequeno/química , Álcoois Açúcares/química , Animais , Células COS , Chlorocebus aethiops , Exorribonucleases , Hepatócitos/metabolismo , Camundongos , Conformação de Ácido Nucleico , Pré-Albumina/genética , Ribonucleotídeos/químicaRESUMO
A high-throughput RNA interference (RNAi) screen targeting 542 genes of the human kinome was used to discover regulators of RNAi. Here we report that the proto-oncogene Akt-3/PKBγ (Akt3) phosphorylates Argonaute 2 (Ago2) at S387, which downregulates cleavage and upregulates translational repression of endogenous microRNA (miRNA)-targeted messenger RNAs (mRNAs). We further demonstrate that Akt3 coimmunoprecipitates with Ago2 and phosphorylation of Ago2 at S387 facilitates its interaction with GW182 and localization to cytoplasmic processing bodies (P bodies), where miRNA-targeted mRNAs are thought to be stored and degraded. Therefore, Akt3-mediated phosphorylation of Ago2 is a molecular switch between target mRNA cleavage and translational repression activities of Ago2.
Assuntos
Proteínas Argonautas/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Argonautas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Regulação para Baixo , Células HEK293 , Células HeLa , Humanos , Fosforilação , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para CimaRESUMO
For oligonucleotide therapeutics, chemical modifications of the sugar-phosphate backbone are frequently used to confer drug-like properties. Because 2'-deoxy-2'-fluoro (2'-F) nucleotides are not known to occur naturally, their safety profile was assessed when used in revusiran and ALN-TTRSC02, two short interfering RNAs (siRNAs), of the same sequence but different chemical modification pattern and metabolic stability, conjugated to an N-acetylgalactosamine (GalNAc) ligand for targeted delivery to hepatocytes. Exposure to 2'-F-monomer metabolites was low and transient in rats and humans. In vitro, 2'-F-nucleoside 5'-triphosphates were neither inhibitors nor preferred substrates for human polymerases, and no obligate or non-obligate chain termination was observed. Modest effects on cell viability and mitochondrial DNA were observed in vitro in a subset of cell types at high concentrations of 2'-F-nucleosides, typically not attained in vivo. No apparent functional impact on mitochondria and no significant accumulation of 2'-F-monomers were observed after weekly administration of two GalNAc-siRNA conjugates in rats for â¼2 years. Taken together, the results support the conclusion that 2'-F nucleotides can be safely applied for the design of metabolically stabilized therapeutic GalNAc-siRNAs with favorable potency and prolonged duration of activity allowing for low dose and infrequent dosing.
Assuntos
Acetilgalactosamina/efeitos adversos , Acetilgalactosamina/química , Desoxirribonucleotídeos/efeitos adversos , Desoxirribonucleotídeos/química , Flúor/química , RNA Interferente Pequeno/efeitos adversos , RNA Interferente Pequeno/química , Animais , Feminino , Flúor/efeitos adversos , Humanos , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
MicroRNAs (miRNAs) regulate physiological and pathological processes by inducing posttranscriptional repression of target messenger RNAs (mRNAs) via incompletely understood mechanisms. To discover factors required for human miRNA activity, we performed an RNAi screen using a reporter cell line of miRNA-mediated repression of translation initiation. We report that reduced expression of ribosomal protein genes (RPGs) dissociated miRNA complexes from target mRNAs, leading to increased polysome association, translation, and stability of miRNA-targeted mRNAs relative to untargeted mRNAs. RNA sequencing of polysomes indicated substantial overlap in sets of genes exhibiting increased or decreased polysomal association after Argonaute or RPG knockdowns, suggesting similarity in affected pathways. miRNA profiling of monosomes and polysomes demonstrated that miRNAs cosediment with ribosomes. RPG knockdowns decreased miRNAs in monosomes and increased their target mRNAs in polysomes. Our data show that most miRNAs repress translation and that the levels of RPGs modulate miRNA-mediated repression of translation initiation.
Assuntos
MicroRNAs/fisiologia , Iniciação Traducional da Cadeia Peptídica/genética , Proteínas Ribossômicas/genética , Células HeLa , Humanos , MicroRNAs/genética , Interferência de RNA , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/fisiologia , Proteína Supressora de Tumor p53/genéticaRESUMO
Short interfering RNAs (siRNAs) and antisense oligonucleotides (ASOs) are the most clinically advanced oligonucleotide-based platforms. A number of N-acetylgalactosamine (GalNAc)-conjugated siRNAs (GalNAc-siRNAs), also referred to as RNA interference (RNAi) therapeutics, are currently in various stages of development, though none is yet approved. While the safety of ASOs has been the subject of extensive review, the nonclinical safety profiles of GalNAc-siRNAs have not been reported. With the exception of sequence differences that confer target RNA specificity, GalNAc-siRNAs are largely chemically uniform, containing limited number of phosphorothioate linkages, and 2'-O-methyl and 2'-deoxy-2'-fluoro ribose modifications. Here, we present the outcomes of short-term (3-5 week) rat and monkey weekly repeat-dose toxicology studies of six Enhanced Stabilization Chemistry GalNAc-siRNAs currently in clinical development. In nonclinical studies at supratherapeutic doses, these molecules share similar safety signals, with histologic findings in the organ of pharmacodynamic effect (liver), the organ of elimination (kidney), and the reticuloendothelial system (lymph nodes). The majority of these changes are nonadverse, partially to completely reversible, correlate well with pharmacokinetic parameters and tissue distribution, and often reflect drug accumulation. Furthermore, all GalNAc-siRNAs tested to date have been negative in genotoxicity and safety pharmacology studies.
Assuntos
Acetilgalactosamina/toxicidade , Aberrações Cromossômicas/induzido quimicamente , Fígado/efeitos dos fármacos , RNA Interferente Pequeno/toxicidade , Acetilgalactosamina/química , Acetilgalactosamina/farmacologia , Animais , Células CHO , Cricetulus , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Fígado/patologia , Linfócitos/efeitos dos fármacos , Linfócitos/patologia , Macaca fascicularis , Testes de Mutagenicidade , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Ratos Sprague-Dawley , Especificidade da Espécie , Testes de Toxicidade SubagudaRESUMO
When it escapes early detection, malignant melanoma becomes a highly lethal and treatment-refractory cancer. Melastatin is greatly downregulated in metastatic melanomas and is widely believed to function as a melanoma tumor suppressor. Here we report that tumor suppressive activity is not mediated by melastatin but instead by a microRNA (miR-211) hosted within an intron of melastatin. Increasing expression of miR-211 but not melastatin reduced migration and invasion of malignant and highly invasive human melanomas characterized by low levels of melastatin and miR-211. An unbiased network analysis of melanoma-expressed genes filtered for their roles in metastasis identified three central node genes: IGF2R, TGFBR2, and NFAT5. Expression of these genes was reduced by miR-211, and knockdown of each gene phenocopied the effects of increased miR-211 on melanoma invasiveness. These data implicate miR-211 as a suppressor of melanoma invasion whose expression is silenced or selected against via suppression of the entire melastatin locus during human melanoma progression.
Assuntos
Genes Supressores de Tumor , Íntrons/genética , Melanoma/genética , MicroRNAs/genética , Neoplasias Cutâneas/genética , Linhagem Celular Tumoral , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismoRESUMO
In this issue of Molecular Cell, Fabian et al. (2009) demonstrate that in cell-free extracts from mouse Krebs-2 ascites, microRNA-mediated translational repression precedes target mRNA deadenylation, and identify GW182, PABP, and deadenylase subunits CAF1 and CCR4 as factors required for deadenylation.
Assuntos
Inativação Gênica , MicroRNAs/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Animais , Proteínas Argonautas , Ascite/genética , Ascite/metabolismo , Autoantígenos/metabolismo , Sítios de Ligação , Carcinoma Krebs 2/genética , Carcinoma Krebs 2/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Exorribonucleases , Humanos , Cinética , Camundongos , Proteínas de Ligação a Poli(A)/genética , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Proteínas/genética , Estabilidade de RNA , Complexo de Inativação Induzido por RNA/genética , Receptores CCR4/metabolismo , Proteínas Repressoras , RibonucleasesRESUMO
MicroRNAs (miRNAs) are endogenous, ~22-nucleotide-long, noncoding RNAs that play critical roles in physiology and disease via mechanisms that remain obscure. Although numerous studies implicate miRNAs in repression of translation, more recent reports suggest that the major role of miRNAs is in reduction of target mRNA stability. Because mRNA translation and stability are intimately connected, it has been a challenge to establish whether miRNAs induce translational repression, mRNA decay, or both. If miRNAs reduce both mRNA translation and stability, the timing and contribution of each process to overall repression is unclear. Indeed, it has been debated whether mRNA decay is a cause or consequence of miRNA-mediated translational repression. On the other hand, if these events are mutually exclusive, what determines which mechanism is used? In a recent issue of Science, Bazzini et al (2012) use genome-wide ribosome footprinting and RNA sequencing (RNA-Seq) to demonstrate that in developing zebrafish embryos, miR-430 naturally represses translation initiation of target mRNAs, followed by their deadenylation and decay.
Assuntos
MicroRNAs/metabolismo , Biossíntese de Proteínas , Animais , Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica , Estabilidade de RNA , Ribossomos/metabolismoRESUMO
MicroRNAs (miRNAs) are small noncoding RNAs that post-transcriptionally regulate protein output from the majority of human mRNAs. In contrast to the consensus view that all miRNAs are associated with Argonaute (Ago) proteins, we determine that miRNAs are expressed in a 13-fold excess relative to Agos in HeLa cells and that miRNAs are bound to mRNAs in a sevenfold excess relative to Agos, implying the existence of miRNA-mRNA duplexes not stoichiometrically bound by Agos. We show that all four human Agos can repress miRNA-mRNA duplexes, but only Ago2 can cleave small interfering RNA-mRNA duplexes in vitro. We visualize direct Ago binding to miRNA-mRNA duplexes in live cells using fluorescence lifetime imaging microscopy. In contrast to the consensus view that Agos bind miRNA duplexes, these data demonstrate that Agos can bind and repress miRNA-mRNA duplexes and support a model of catalytic Ago function in translational repression.
Assuntos
Proteínas Argonautas/metabolismo , Carboxipeptidases/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , MicroRNAs/metabolismo , RNA de Cadeia Dupla/química , RNA Mensageiro/metabolismo , Proteínas Argonautas/química , Carboxipeptidases/química , Fatores de Iniciação em Eucariotos/química , Células HeLa , Humanos , MicroRNAs/química , Ligação Proteica , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/química , Receptores CXCR4/genéticaRESUMO
The majority of mammalian microRNA (miRNA) genes reside within introns of protein-encoding and non-coding genes, yet the mechanisms coordinating primary transcript processing into both mature miRNA and spliced mRNA are poorly understood. Analysis of melanoma invasion suppressor miR-211 expressed from intron 6 of melastatin revealed that microprocessing of miR-211 promotes splicing of the exon 6-exon 7 junction of melastatin by a mechanism requiring the RNase III activity of Drosha. Additionally, mutations in the 5' splice site (5'SS), but not in the 3'SS, branch point, or polypyrimidine tract of intron 6 reduced miR-211 biogenesis and Drosha recruitment to intron 6, indicating that 5'SS recognition by the spliceosome promotes microprocessing of miR-211. Globally, knockdown of U1 splicing factors reduced intronic miRNA expression. Our data demonstrate novel mutually-cooperative microprocessing and splicing activities at an intronic miRNA locus and suggest that the initiation of spliceosome assembly may promote microprocessing of intronic miRNAs.
Assuntos
Íntrons/genética , MicroRNAs/genética , Splicing de RNA , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Melanócitos/citologia , Fases de Leitura Aberta/genética , Proteínas/genética , Proteínas/metabolismo , Processamento Pós-Transcricional do RNA , Sítios de Splice de RNA/genética , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA , Ribonuclease III/genética , Ribonuclease III/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Spliceossomos/genética , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismoRESUMO
To ensure specificity of small interfering RNAs (siRNAs), the antisense strand must be selected by the RNA-induced silencing complex (RISC). We have previously demonstrated that a 5'-morpholino-modified nucleotide at the 5'-end of the sense strand inhibits its interaction with RISC ensuring selection of the desired antisense strand. To improve this antagonizing binding property even further, a new set of morpholino-based analogues, Mo2 and Mo3, and a piperidine analogue, Pip, were designed based on the known structure of Argonaute2, the slicer enzyme component of RISC. Sense strands of siRNAs were modified with these new analogues, and the siRNAs were evaluated in vitro and in mice for RNAi activity. Our data demonstrated that Mo2 is the best RISC inhibitor among the modifications tested and that it effectively mitigates sense strand-based off-target activity of siRNA.
Assuntos
RNA Interferente Pequeno , Complexo de Inativação Induzido por RNA , Animais , Camundongos , RNA Interferente Pequeno/química , Complexo de Inativação Induzido por RNA/genética , Complexo de Inativação Induzido por RNA/metabolismo , Morfolinos/químicaRESUMO
Therapeutics based on short interfering RNAs (siRNAs) delivered to hepatocytes have been approved, but new delivery solutions are needed to target additional organs. Here we show that conjugation of 2'-O-hexadecyl (C16) to siRNAs enables safe, potent and durable silencing in the central nervous system (CNS), eye and lung in rodents and non-human primates with broad cell type specificity. We show that intrathecally or intracerebroventricularly delivered C16-siRNAs were active across CNS regions and cell types, with sustained RNA interference (RNAi) activity for at least 3 months. Similarly, intravitreal administration to the eye or intranasal administration to the lung resulted in a potent and durable knockdown. The preclinical efficacy of an siRNA targeting the amyloid precursor protein was evaluated through intracerebroventricular dosing in a mouse model of Alzheimer's disease, resulting in amelioration of physiological and behavioral deficits. Altogether, C16 conjugation of siRNAs has the potential for safe therapeutic silencing of target genes outside the liver with infrequent dosing.
Assuntos
Precursor de Proteína beta-Amiloide , Terapêutica com RNAi , Animais , Camundongos , Primatas/genética , Primatas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêuticoRESUMO
Serum protein interactions are evaluated during the drug development process since they determine the free drug concentration in blood and thereby can influence the drug's pharmacokinetic and pharmacodynamic properties. While the impact of serum proteins on the disposition of small molecules is well understood, it is not yet well characterized for a new modality, RNA interference therapeutics. When administered systemically, small interfering RNAs (siRNAs) conjugated to the N-acetylgalactosamine (GalNAc) ligand bind to proteins present in circulation. However, it is not known if these protein interactions may impact the GalNAc-conjugated siRNA uptake into hepatocytes mediated through the asialoglycoprotein receptor (ASGPR) and thereby influence the activity of GalNAc-conjugated siRNAs. In this study, we assess the impact of serum proteins on the uptake and activity of GalNAc-conjugated siRNAs in primary human hepatocytes. We found that a significant portion of the GalNAc-conjugated siRNAs is bound to serum proteins. However, ASGPR-mediated uptake and activity of GalNAc-conjugated siRNAs were minimally impacted by the presence of serum relative to their uptake and activity in the absence of serum. Therefore, in contrast to small molecules, serum proteins are expected to have minimal impact on pharmacokinetic and pharmacodynamic properties of GalNAc-conjugated siRNAs.
Assuntos
Acetilgalactosamina , Hepatócitos , Receptor de Asialoglicoproteína/genética , Receptor de Asialoglicoproteína/metabolismo , Proteínas Sanguíneas/genética , Hepatócitos/metabolismo , Humanos , Interferência de RNA , RNA Interferente Pequeno/genéticaRESUMO
Small interfering RNAs (siRNAs) conjugated to a trivalent N-acetylgalactosamine (GalNAc) ligand are being evaluated in investigational clinical studies for a variety of indications. The typical development candidate selection process includes evaluation of the most active compounds for toxicity in rats at pharmacologically exaggerated doses. The subset of GalNAc-siRNAs that show rat hepatotoxicity is not advanced to clinical development. Potential mechanisms of hepatotoxicity can be associated with the intracellular accumulation of oligonucleotides and their metabolites, RNA interference (RNAi)-mediated hybridization-based off-target effects, and/or perturbation of endogenous RNAi pathways. Here we show that rodent hepatotoxicity observed at supratherapeutic exposures can be largely attributed to RNAi-mediated off-target effects, but not chemical modifications or the perturbation of RNAi pathways. Furthermore, these off-target effects can be mitigated by modulating seed-pairing using a thermally destabilizing chemical modification, which significantly improves the safety profile of a GalNAc-siRNA in rat and may minimize the occurrence of hepatotoxic siRNAs across species.