Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 220: 116847, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32438046

RESUMO

Magnetoencephalography and electroencephalography (M/EEG) are non-invasive modalities that measure the weak electromagnetic fields generated by neural activity. Estimating the location and magnitude of the current sources that generated these electromagnetic fields is an inverse problem. Although it can be cast as a linear regression, this problem is severely ill-posed as the number of observations, which equals the number of sensors, is small. When considering a group study, a common approach consists in carrying out the regression tasks independently for each subject using techniques such as MNE or sLORETA. An alternative is to jointly localize sources for all subjects taken together, while enforcing some similarity between them. By pooling S subjects in a single joint regression, the number of observations is S times larger, potentially making the problem better posed and offering the ability to identify more sources with greater precision. Here we show how the coupling of the different regression problems can be done through a multi-task regularization that promotes focal source estimates. To take into account intersubject variabilities, we propose the Minimum Wasserstein Estimates (MWE). Thanks to a new joint regression method based on optimal transport (OT) metrics, MWE does not enforce perfect overlap of activation foci for all subjects but rather promotes spatial proximity on the cortical mantle. Besides, by estimating the noise level of each subject, MWE copes with the subject-specific signal-to-noise ratios with only one regularization parameter. On realistic simulations, MWE decreases the localization error by up to 4 â€‹mm per source compared to individual solutions. Experiments on the Cam-CAN dataset show improvements in spatial specificity in population imaging compared to individual models such as dSPM as well as a state-of-the-art Bayesian group level model. Our analysis of a multimodal dataset shows how multi-subject source localization reduces the gap between MEG and fMRI for brain mapping.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Magnetoencefalografia/métodos , Modelos Neurológicos , Humanos , Análise Multivariada , Razão Sinal-Ruído
2.
Cell Death Dis ; 11(1): 19, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31907355

RESUMO

Drug resistance limits the therapeutic efficacy in cancers and leads to tumor recurrence through ill-defined mechanisms. Glioblastoma (GBM) are the deadliest brain tumors in adults. GBM, at diagnosis or after treatment, are resistant to temozolomide (TMZ), the standard chemotherapy. To better understand the acquisition of this resistance, we performed a longitudinal study, using a combination of mathematical models, RNA sequencing, single cell analyses, functional and drug assays in a human glioma cell line (U251). After an initial response characterized by cell death induction, cells entered a transient state defined by slow growth, a distinct morphology and a shift of metabolism. Specific genes expression associated to this population revealed chromatin remodeling. Indeed, the histone deacetylase inhibitor trichostatin (TSA), specifically eliminated this population and thus prevented the appearance of fast growing TMZ-resistant cells. In conclusion, we have identified in glioblastoma a population with tolerant-like features, which could constitute a therapeutic target.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Temozolomida/uso terapêutico , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Modelos Biológicos , Análise de Célula Única , Temozolomida/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa