RESUMO
The animal models of seizures and/or epilepsy are widely used to identify the pathomechanisms of the disease as well as to look for and test the new antiseizure therapies. The understanding of the mechanisms of action of new drugs and evaluation of their safety in animals require previous knowledge concerning the biomolecular anomalies characteristic for the particular model. Among different models of seizures, one of the most widely used is the kindling model that was also applied in our study. To examine the influence of multiple transauricular electroshocks on the biochemical composition of rat hippocampal formation, Fourier transform infrared (FT-IR) microspectrosopy was utilized. The chemical mapping of the main absorption bands and their ratios allowed us to detect significant anomalies in both the distribution and structure of main biomolecules for electrically stimulated rats. They included an increased relative content of proteins with ß-sheet conformation (an increased ratio of the absorbance at the wavenumbers of 1635 and 1658 cm-1), a decreased level of cholesterol and/or its esters and compounds containing phosphate groups (a diminished intensity of the massif of 1360-1480 cm-1 and the band at 1240 cm-1), as well as increased accumulation of carbohydrates and the compounds containing carbonyl groups (increased intensity of the bands at 1080 and 1740 cm-1, respectively). The observed biomolecular abnormalities seem to be the consequence of lipid peroxidation promoted by reactive oxygen species as well as the mobilization of glucose that resulted from the increased demand to energy during postelectroshock seizures.
Assuntos
Hipocampo , Convulsões , Animais , Análise de Fourier , Ratos , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
The literature showing how age of humans or animals influences the IR absorption spectra recorded in different brain regions is very poor. A very limited number of studies used FTIR microspectroscopy for analysis of the aging process, however there is lack of data concerning the biomolecular changes occurring in the course of postnatal development of the central nervous system. Therefore, in this paper the topographic and semiquantitative biochemical changes occurring within the rat hippocampus during postnatal development were examined. To achieve the goal of the study, three groups of normal male rats differing in age were investigated. These were 6, 30, and 60 day old animals, and the chosen ages correspond to the neonatal period, childhood, and early adulthood in humans, respectively. Already, preliminary topographic analysis identified a number of significant changes in the accumulation of biomolecules within the hippocampal formation occurring during brain development. Such observation was confirmed by further semiquantitative analysis of intensities of selected absorption bands or ratios of their intensities. The detailed examinations were done for four hippocampal cellular layers (multiform, molecular, pyramidal, and granular layers), and the results showed that the accumulation of most biomolecules, including both saturated and unsaturated lipids as well as compounds containing phosphate and carbonyl groups, was significantly higher in adulthood comparing to the neonatal period. What is more, the increases in their levels were observed mostly between 6th and 30th days of animals' life. The unsaturation level of lipids did not change during postnatal development, although the differences in unsaturated and saturated lipids contents were noticed between examined animal groups. Significant differences in relative secondary structure of proteins were found between young adult rats and animals in neonatal period for which the relative level of proteins with ß-type secondary structure was the highest.