Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Blood ; 139(22): 3325-3339, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35226727

RESUMO

We previously demonstrated that interferon γ (IFN-γ) derived from donor T cells co-opts the indoleamine 2,3-dioxygenase 1 (IDO1) → aryl hydrocarbon receptor (AHR) axis to suppress idiopathic pneumonia syndrome (IPS). Here we report that the dysregulated expression of AP-1 family genes in Ahr-/- lung epithelial cells exacerbated IPS in allogeneic bone marrow transplantation settings. AHR repressed transcription of Jund by preventing STAT1 from binding to its promoter. As a consequence, decreased interleukin-6 impaired the differentiation of CD4+ T cells toward Th17 cells. IFN-γ- and IDO1-independent induction of Ahr expression indicated that the AHR agonist might be a better therapeutic target for IPS than the IDO1 activator. We developed a novel synthetic AHR agonist (referred to here as PB502) that potently inhibits Jund expression. PB502 was highly effective at inducing AHR activation and ameliorating IPS. Notably, PB502 was by far superior to the endogenous AHR ligand, L-kynurenine, in promoting the differentiation of both mouse and human FoxP3+ regulatory CD4+ T cells. Our results suggest that the IDO1-AHR axis in lung epithelial cells is associated with IPS repression. A specific AHR agonist may exhibit therapeutic activity against inflammatory and autoimmune diseases by promoting regulatory T-cell differentiation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Pneumonia , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Linfócitos T CD4-Positivos/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/metabolismo , Camundongos , Pneumonia/tratamento farmacológico , Transdução de Sinais , Linfócitos T Reguladores/metabolismo
2.
Stem Cells ; 41(1): 64-76, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36242771

RESUMO

Preconditioning of mesenchymal stem/stromal cells (MSCs) with the inflammatory cytokine IFN-γ enhances not only their immunosuppressive activity but also their expression of HLA and proinflammatory genes. We hypothesized that prevention of the upregulation of inflammatory cytokines and HLA molecules in IFN-γ-primed MSCs would render these cells more immunosuppressive and less immunogenic. In this study, we discovered the following findings supporting this hypothesis: (1) activated human T cells induced the expression of IDO1 in MSCs via IFN-γ secretion and those MSCs in turn inhibited T-cell proliferation in an AHR-dependent fashion; (2) there was no difference in the expression of IDO1 and HLA-DR in MSCs after priming with a low dose (25 IU/mL) versus a high dose (100 IU/mL) of IFN-γ; (3) the transient addition of bortezomib, a proteasome inhibitor, to culture MSCs after IFN-γ priming decreased the expression of HLA-DR, inflammatory cytokine genes and Vcam1 while increasing the expression of IDO1 and the production of L-kynurenine; finally, MSCs primed with a combination of a low dose of IFN-γ and bortezomib were more effective in inhibiting Th17-mediated idiopathic pneumonia syndrome (IPS) and chronic colitis than unprimed MSCs. Our results suggest that bortezomib significantly eliminates the unfavorable effects of IFN-γ priming of MSCs (increased expression of MHC molecules and inflammatory cytokines and cell aggregation genes) and simultaneously increases their immunosuppressive activity by upregulating IDO1. Taken together, our newly established MSC priming method may contribute to MSC-based cell therapy for inflammatory diseases.


Assuntos
Citocinas , Interferon gama , Humanos , Bortezomib/farmacologia , Interferon gama/farmacologia , Interferon gama/metabolismo , Células Estromais/metabolismo
3.
Proc Natl Acad Sci U S A ; 114(29): E5881-E5890, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28673995

RESUMO

The lung is a prototypic organ that was evolved to reduce immunopathology during the immune response to potentially hazardous endogenous and exogenous antigens. In this study, we show that donor CD4+ T cells transiently induced expression of indoleamine 2,3-dioxygenase (IDO) in lung parenchyma in an IFN-γ-dependent manner early after allogeneic hematopoietic stem cell transplantation (HSCT). Abrogation of host IDO expression by deletion of the IDO gene or the IFN-γ gene in donor T cells or by FK506 treatment resulted in acute lethal pulmonary inflammation known as idiopathic pneumonia syndrome (IPS). Interestingly, IL-6 strongly induced IDO expression in an IFN-γ-independent manner when deacetylation of STAT3 was inhibited. Accordingly, a histone deacetylase inhibitor (HDACi) could reduce IPS in the state where IFN-γ expression was suppressed by FK506. Finally, l-kynurenine produced by lung epithelial cells and alveolar macrophages during IPS progression suppresses the inflammatory activities of lung epithelial cells and CD4+ T cells through the aryl hydrocarbon receptor pathway. Taken together, our results reveal that IDO is a critical regulator of acute pulmonary inflammation and that regulation of IDO expression by HDACi may be a therapeutic approach for IPS after HSCT.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transplante de Células-Tronco Hematopoéticas , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Pneumonia/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Feminino , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas/mortalidade , Inibidores de Histona Desacetilases/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Interferon gama/genética , Interferon gama/metabolismo , Interferon gama/farmacologia , Cinurenina/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Pneumonia/tratamento farmacológico , Receptores de Hidrocarboneto Arílico/imunologia , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T Reguladores/imunologia , Tacrolimo/farmacologia , Receptor de Interferon gama
4.
Regul Toxicol Pharmacol ; 80: 183-94, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27318101

RESUMO

Local lymph node assay: 5-bromo-2-deoxyuridine-flow cytometry method (LLNA: BrdU-FCM) is a modified non-radioisotopic technique with the additional advantages of accommodating multiple endpoints with the introduction of FCM, and refinement and reduction of animal use by using a sophisticated prescreening scheme. Reliability and accuracy of the LLNA: BrdU-FCM was determined according to OECD Test Guideline (TG) No. 429 (Skin Sensitization: Local Lymph Node Assay) performance standards (PS), with the participation of four laboratories. Transferability was demonstrated through successfully producing stimulation index (SI) values for 25% hexyl cinnamic aldehyde (HCA) consistently greater than 3, a predetermined threshold, by all participating laboratories. Within- and between-laboratory reproducibility was shown using HCA and 2,4-dinitrochlorobenzene, in which EC2.7 values (the estimated concentrations eliciting an SI of 2.7, the threshold for LLNA: BrdU-FCM) fell consistently within the acceptance ranges, 0.025-0.1% and 5-20%, respectively. Predictive capacity was tested using the final protocol version 1.3 for the 18 reference chemicals listed in OECD TG 429, of which results showed 84.6% sensitivity, 100% specificity, and 88.9% accuracy compared with the original LLNA. The data presented are considered to meet the performance criteria for the PS, and its predictive capacity was also sufficiently validated.


Assuntos
Acroleína/análogos & derivados , Bromodesoxiuridina , Dinitroclorobenzeno/toxicidade , Citometria de Fluxo , Ensaio de Proficiência Laboratorial , Ensaio Local de Linfonodo , Linfonodos/efeitos dos fármacos , Acroleína/toxicidade , Animais , Feminino , Citometria de Fluxo/normas , Fidelidade a Diretrizes , Guias como Assunto , Humanos , Linfonodos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Variações Dependentes do Observador , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , República da Coreia
6.
Biosci Biotechnol Biochem ; 78(4): 644-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25036961

RESUMO

Location of membrane proteins is often stabilized by PDZ domain-containing scaffolding proteins. Using the yeast two-hybrid screening, we found that neurexin 1 interacted with multi-PDZ domain protein 1 (MUPP1) through PDZ domain. Neurexin 2 and 3 also interacted with MUPP1. MUPP1 and neurexin 1 were co-localized in cultured cells. These results suggest a novel mechanism for localizing neurexin 1 to synaptic sites.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Domínios PDZ , Animais , Proteínas de Ligação ao Cálcio , Proteínas de Membrana , Camundongos , Ligação Proteica , Transporte Proteico
7.
Diabetes ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302854

RESUMO

Hypothalamic innate immune responses to dietary fats underpin the pathogenesis of obesity, in which microglia play a critical role. Progranulin (PGRN) is an evolutionarily -conserved secretory protein containing seven-and-a-half granulin (GRN) motifs. It is cleaved into GRNs by multiple proteases. In the central nervous system, PGRN is highly expressed in microglia. To investigate the role of microglia-derived PGRN in metabolism regulation, we established a mouse model with a microglia-specific deletion of the Grn gene, that encodes PGRN. Mice with microglia-specific Grn gene depletion displayed dietdependent metabolic phenotypes. Under normal diet-fed conditions, microglial Grn gene depletion produced adverse outcomes like fasting hyperglycemia and aberrant activation of hypothalamic microglia. However, when fed a high fat diet (HFD), these mice exhibited beneficial effects, including less obesity, glucose dysregulation, and hypothalamic inflammation. These differing phenotypes appear linked to increased extracellular cleavage of anti-inflammatory PGRN into proinflammatory GRNs in the hypothalamus during overnutrition. In support of this, inhibiting PGRN cleavage attenuated HFD-induced hypothalamic inflammation and obesity progression. Our results suggest that the extracellular cleavage of microglia-derived PGRN plays a significant role in promoting hypothalamic inflammation and obesity during periods of overnutrition. Therefore, therapies that inhibit PGRN cleavage may be beneficial for combating dietinduced obesity.

8.
Nat Commun ; 15(1): 2102, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453901

RESUMO

Nicotinamide adenine dinucleotide (NAD)+ serves as a crucial coenzyme in numerous essential biological reactions, and its cellular availability relies on the activity of the nicotinamide phosphoribosyltransferase (NAMPT)-catalyzed salvage pathway. Here we show that treatment with saturated fatty acids activates the NAD+ salvage pathway in hypothalamic astrocytes. Furthermore, inhibition of this pathway mitigates hypothalamic inflammation and attenuates the development of obesity in male mice fed a high-fat diet (HFD). Mechanistically, CD38 functions downstream of the NAD+ salvage pathway in hypothalamic astrocytes burdened with excess fat. The activation of the astrocytic NAMPT-NAD+-CD38 axis in response to fat overload induces proinflammatory responses in the hypothalamus. It also leads to aberrantly activated basal Ca2+ signals and compromised Ca2+ responses to metabolic hormones such as insulin, leptin, and glucagon-like peptide 1, ultimately resulting in dysfunctional hypothalamic astrocytes. Our findings highlight the significant contribution of the hypothalamic astrocytic NAD+ salvage pathway, along with its downstream CD38, to HFD-induced obesity.


Assuntos
Gorduras na Dieta , NAD , Masculino , Camundongos , Animais , NAD/metabolismo , Gorduras na Dieta/metabolismo , Astrócitos/metabolismo , Obesidade/metabolismo , Hipotálamo/metabolismo , Citocinas/metabolismo
9.
Exp Dermatol ; 22(11): 762-4, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24107097

RESUMO

Melanogenesis is essential for the protection of skin against UV, but excessive production of melanin causes unaesthetic hyperpigmentation. Much effort is being made to develop effective depigmenting agents. Here, we found that a tyrosinase inhibitor, AP736 (5-adamantan-1-yl-N-(2,4-dihydroxy-benzyl)-2,4-dimethoxy-benzamide) potently suppresses tyrosinase expression, and the mechanism underlying was elucidated. AP736 attenuated the melanin production induced by diverse melanogenic stimuli in murine and human melanocytes. It suppressed the expression of key melanogenic enzymes; tyrosinase, tyrosinase-related protein-1 and tyrosinase-related protein-2. The expression of microphthalmia-associated transcription factor (MiTF), a major promoter of melanogenesis was also decreased. AP736 inhibited the activation of cAMP response element-binding protein (CREB) and phosphokinase A (PKA), and cAMP elevation, reflecting that cAMP-PKA-CREB signalling axis was suppressed, resulting in the downregulation of MiTF and tyrosinase. Along with the previously reported tyrosinase inhibitory activity, the suppression of cAMP-PKA-CREB-mediated MiTF and tyrosinase expression by AP736 may be efficient for the treatment for hyperpigmentation.


Assuntos
Adamantano/análogos & derivados , Benzamidas/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Fator de Transcrição Associado à Microftalmia/antagonistas & inibidores , Monofenol Mono-Oxigenase/antagonistas & inibidores , Adamantano/química , Animais , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Humanos , Hiperpigmentação/metabolismo , Melaninas/química , Melanócitos/citologia , Melanoma Experimental/metabolismo , Camundongos , Transdução de Sinais , Pele/patologia , Neoplasias Cutâneas/metabolismo
10.
Nat Commun ; 14(1): 1994, 2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031230

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor of critical enzymes including protein deacetylase sirtuins/SIRTs and its levels in mammalian cells rely on the nicotinamide phosphoribosyltransferase (NAMPT)-mediated salvage pathway. Intracellular NAMPT (iNAMPT) is secreted and found in the blood as extracellular NAMPT (eNAMPT). In the liver, the iNAMPT-NAD+ axis oscillates in a circadian manner and regulates the cellular clockwork. Here we show that the hypothalamic NAD+ levels show a distinct circadian fluctuation with a nocturnal rise in lean mice. This rhythm is in phase with that of plasma eNAMPT levels but not with that of hypothalamic iNAMPT levels. Chemical and genetic blockade of eNAMPT profoundly inhibit the nighttime elevations in hypothalamic NAD+ levels as well as those in locomotor activity (LMA) and energy expenditure (EE). Conversely, elevation of plasma eNAMPT by NAMPT administration increases hypothalamic NAD+ levels and stimulates LMA and EE via the hypothalamic NAD+-SIRT-FOXO1-melanocortin pathway. Notably, obese animals display a markedly blunted circadian oscillation in blood eNAMPT-hypothalamic NAD+-FOXO1 axis as well as LMA and EE. Our findings indicate that the eNAMPT regulation of hypothalamic NAD+ biosynthesis underlies circadian physiology and that this system can be significantly disrupted by obesity.


Assuntos
Citocinas , NAD , Camundongos , Animais , NAD/metabolismo , Citocinas/metabolismo , Fígado/metabolismo , Metabolismo Energético , Ritmo Circadiano , Locomoção , Mamíferos/metabolismo
11.
Chonnam Med J ; 58(1): 37-42, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35169558

RESUMO

To investigate differences of tear neuromediators between subjects with and without dry eye (DE) depending on the ocular sensitivity. Thirty-one subjects with DE and 29 subjects without DE were recruited in this study. The eyes were stimulated by exposure to an irritating product applied to the periocular region. Both DE and non-DE subjects were divided into the high sensitivity and low sensitivity groups based on the degree of ocular sensitivity to ocular irritation. Baseline tear film break-up time (TBUT) and corneal staining score were examined, and tear samples were collected. The concentrations of the tear neuromediators, including nerve growth factor (NGF), serotonin, calcitonin gene-related peptide (CGRP), substance P, neuropeptide Y, and vasoactive intestinal peptide were measured using the enzyme-linked immune sorbent assay. The baseline neuromediator concentrations were compared between subjects with and without DE based on ocular sensitivity. In both DE and non-DE subjects, baseline TBUT was significantly lower in the high sensitivity group than in the low sensitivity group. In the high sensitivity group, baseline tear NGF levels were higher in subjects with DE than in those without DE. In the low sensitivity group, baseline levels of tear CGRP were lower in subjects with DE than in those without DE. Tear neuromediators associated with DE had differences in their concentrations depending on ocular sensitivity. In patients with DE, tear NGF levels increased with high ocular sensitivity to ocular irritation, whereas tear CGRP levels decreased with low ocular sensitivity.

12.
Cell Metab ; 33(2): 334-349.e6, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33535098

RESUMO

Low-grade mitochondrial stress can promote health and longevity, a phenomenon termed mitohormesis. Here, we demonstrate the opposing metabolic effects of low-level and high-level mitochondrial ribosomal (mitoribosomal) stress in hypothalamic proopiomelanocortin (POMC) neurons. POMC neuron-specific severe mitoribosomal stress due to Crif1 homodeficiency causes obesity in mice. By contrast, mild mitoribosomal stress caused by Crif1 heterodeficiency in POMC neurons leads to high-turnover metabolism and resistance to obesity. These metabolic benefits are mediated by enhanced thermogenesis and mitochondrial unfolded protein responses (UPRmt) in distal adipose tissues. In POMC neurons, partial Crif1 deficiency increases the expression of ß-endorphin (ß-END) and mitochondrial DNA-encoded peptide MOTS-c. Central administration of MOTS-c or ß-END recapitulates the adipose phenotype of Crif1 heterodeficient mice, suggesting these factors as potential mediators. Consistently, regular running exercise at moderate intensity stimulates hypothalamic MOTS-c/ß-END expression and induces adipose tissue UPRmt and thermogenesis. Our findings indicate that POMC neuronal mitohormesis may underlie exercise-induced high-turnover metabolism.


Assuntos
Hipotálamo/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Condicionamento Físico Animal , Pró-Opiomelanocortina/metabolismo , Animais , Linhagem Celular Tumoral , Metabolismo Energético , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
13.
J Cell Physiol ; 224(3): 807-16, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20578248

RESUMO

In spite of the advances in the knowledge of adipose-derived stem cells (ASCs), in situ location of ASCs and the niche component of adipose tissue (AT) remain controversial due to the lack of an appropriate culture system. Here we describe a fibrin matrix-supported three-dimensional (3D) organ culture system for AT which sustains the ASC niche and allows for in situ mobilization and expansion of ASCs in vitro. AT fragments were completely encapsulated within the fibrin matrix and cultured under dynamic condition. The use of organ culture of AT resulted in a robust outgrowth and proliferation in the fibrin matrix. The outgrown cells were successfully recovered from fibrin by urokinase treatment. These outgrown cells fulfilled the criteria of mesenchymal stem cells, adherence to plastic, multilineage differentiation, and cell surface molecule expression. In vitro label retaining assay revealed that newly divided cells during the culture resided in interstitium between adipocytes and capillary endothelial cells. These interstitial stromal cells proliferated and outgrew into the fibrin matrix. Both in situ mobilized and outgrown cells expressed CD146 and alpha-smooth muscle actin (SMA), but no endothelial cell markers (CD31 and CD34). The structural integrity and spatial approximation of CD31(-)/CD34(-)/CD146(+)/SMA(+) interstitial stromal cells, adipocytes, and capillary endothelial cells were well preserved during in vitro culture. Our results suggest that ASCs are natively associated with the capillary wall and more specifically, belong to a subset of pericytes. Furthermore, organ culture of AT within a fibrin matrix-supported 3D environment can recapitulate the ASC niche in vitro.


Assuntos
Tecido Adiposo/citologia , Técnicas de Cultura de Órgãos/métodos , Nicho de Células-Tronco , Células-Tronco/fisiologia , Adulto , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células , Células Cultivadas , Fibrina/metabolismo , Humanos , Pessoa de Meia-Idade , Fenótipo , Células-Tronco/citologia , Células Estromais/citologia , Células Estromais/fisiologia , Alicerces Teciduais
14.
Toxicol In Vitro ; 63: 104675, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31648046

RESUMO

In order to overcome the limitations of single in vitro eye irritation tests, Integrated Approaches to Testing Assessment strategies have been suggested for evaluating eye irritation. This study developed two tiered approaches combining alternative test methods. They were designed in consideration of the solubility property of test chemicals and to use the RhCE tests at final steps. The tiered approach A is composed of the STE, BCOP, HET-CAM or RhCE tests, whereas the tiered approach B is designed to perform simultaneously two in vitro test methods at the first stage and the RhCE test at the final stage. The predictive capacity of the two tiered approaches was estimated using 47 chemicals. The accuracy, sensitivity, and specificity value of the tiered approach A were 95.7% (45/47), 100% (34/34), and 84.6% (11/13), respectively, whereas those of the tiered approach B were 95.7% (45/47), 97.1% (33/34), and 92.3% (12/13), respectively. The approach A and B were considered to be available methods for distinguishing test chemicals of Category 1 (all 73.3%) and No Category (84.6% and 92.3%), respectively. Especially, the approach B was considered as an efficient method as the Bottom-Up approach, because it predicted correctly test chemicals classified as No Category.


Assuntos
Córnea/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Irritantes/toxicidade , Testes de Toxicidade , Alternativas aos Testes com Animais , Animais , Bovinos , Embrião de Galinha , Membrana Corioalantoide/efeitos dos fármacos , Opacidade da Córnea/induzido quimicamente , Humanos , Sensibilidade e Especificidade
15.
Biochem Biophys Res Commun ; 379(2): 255-60, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19101504

RESUMO

We used an organ culture of nasal polyps (NP) to provide ex vivo model to study the expression of pro-angiogenic cytokines and the effect of glucocorticoids in the pathogenesis of NP. Glucocorticoids are the drugs of choice for clinical treatment of NP; however, their mechanism of action is not fully understood. The cell-cell and cell-matrix integrity is well maintained in cultured NP. Expression of IL-6, IL-8, bFGF, GRO, and MCP-1 was increased in cultured NP compared to pre-cultured NP. Expression levels of IL-6, bFGF, and GRO in cultured NP were downregulated by dexamethasone (DEX) treatment, while MCP-1 expression was not suppressed. Further, RT-PCR and immunohistochemical analysis showed that HIF-1alpha and VEGF were suppressed in DEX-treated NP compared to untreated NP. Taken together, these results suggest that ex vivo organ culture can be considered a useful model to study the pathogenesis and regulation of pro-angiogenic cytokines in nasal polypogenesis.


Assuntos
Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Dexametasona/metabolismo , Modelos Biológicos , Pólipos Nasais/fisiopatologia , Neovascularização Patológica/metabolismo , Dexametasona/farmacologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Pólipos Nasais/metabolismo , Pólipos Nasais/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Técnicas de Cultura de Órgãos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/biossíntese
16.
J Neurosci Res ; 87(1): 123-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18711745

RESUMO

Mutations in DJ-1 (PARK7) cause recessively inherited Parkinson's disease. DJ-1 is a multifunctional protein with antioxidant and transcription modulatory activity. Its localization in cytoplasm, mitochondria, and nucleus is recognized, but the relevance of this subcellular compartmentalization to its cytoprotective activity is not fully understood. Here we report that under basal conditions DJ-1 is present mostly in the cytoplasm and to a lesser extent in mitochondria and nucleus of dopaminergic neuroblastoma SK-N-BE(2)C cells. Upon oxidant challenge, more DJ-1 translocates to mitochondria within 3 hr and subsequently to the nucleus by 12 hr. The predominant DJ-1 species in both mitochondria and nucleus is a dimer believed to be the functional form. Mutating cysteine 106, 53, or 46 had no impact on the translocation of DJ-1 to mitochondria. To study the relative neuroprotective activity of DJ-1 in mitochondria and nucleus, DJ-1 cDNA constructs fused to the appropriate localization signal were transfected into cells. Compared with 30% protection against oxidant-induced cell death in wild-type DJ-1-transfected cells, mitochondrial targeting of DJ-1 provided a significantly stronger (55%) cytoprotection based on lactate dehydrogenase release. Nuclear targeting of DJ-1 preserved cells equally as well as the wild-type protein. These observations suggest that the time frame for the translocation of DJ-1 from the cytoplasm to mitochondria and to the nucleus following oxidative stress is quite different and that dimerized DJ-1 in mitochondria is functional as an antioxidant not related to cysteine modification. These findings further highlight the multifaceted functions of DJ-1 as a cytoprotector in different cellular compartments.


Assuntos
Apoptose/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/metabolismo , Proteínas Oncogênicas/metabolismo , Análise de Variância , Apoptose/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cisteína/genética , Humanos , Peróxido de Hidrogênio/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mutação , Neuroblastoma/patologia , Proteínas Oncogênicas/genética , Oxidantes/farmacologia , Proteína Desglicase DJ-1 , Transfecção/métodos
17.
Toxicol In Vitro ; 55: 173-184, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30572010

RESUMO

The need for in vitro eye irritation test replacing in vivo is steadily increasing. The MCTT HCE™ eye irritation test (EIT) using 3D reconstructed human cornea-like epithelium, was developed to identify ocular irritants from non-irritants those that are not requiring classification and labelling for eye irritation. Here, we report the results of me-too validation study, which was conducted to evaluate the reliability and relevance of the MCTT HCETM EIT, according to performance standards (PS) of OECD TG 492. The optimal cutoff to determine irritation in the prediction model was preliminarily established at 45% with the receiver operation characteristics (ROC) curve for 141 reference substances. To demonstrate the reproducibility of within- and between-laboratory (WLR and BLR), a set of 30 PS reference chemicals were tested in three laboratories three times. The WLR and BLR concordance with the binary decision of whether non-irritant or irritant was estimated to be 90-100% and 90%, respectively, and both met the PS requirements. The predictive capacity of the respective laboratories for the 30 reference chemicals were evaluated based on three different estimation methods, and the results were comparable, with sensitivity ranging from 89.6 to 93.3%, the specificity ranging from 62.2 to 66.7%, and the accuracy ranging from 75.9 to 80.0%. Additional test with the new set of 30 PS substances in the revised OECD GD 216 yielded a performance of sensitivity ranging from 92.6-93.3%, the specificity 62.2-66.7% and the accuracy 77.4-80.0%. 95.0% sensitivity, 67.2% specificity, and 83.0% accuracy were obtained for 141 reference substances in total. Furthermore, separate cutoffs for liquids and solids, 35% and 60%, respectively, produced better predictivity, which was established as a final prediction model. Collectively, our study demonstrated that MCTT HCETM EIT meets the reproducibility and predictivity criteria stated in OECD TG 492 PS.


Assuntos
Alternativas aos Testes com Animais , Epitélio Corneano/efeitos dos fármacos , Irritantes/toxicidade , Testes de Toxicidade/métodos , Humanos , Reprodutibilidade dos Testes
18.
Biomed Rep ; 6(1): 46-50, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28123706

RESUMO

Kinesin 1 is a member of the kinesin superfamily proteins (KIFs) of microtubule-dependent molecular motor proteins that transport organelles and protein complexes in cells. Kinesin 1 consists of a homo- or hetero-dimer of kinesin heavy chains (KHCs), often, although not always, associated with two kinesin light chains (KLCs). KLCs are non-motor proteins that associate with many different binding proteins and cargoes, but their binding partners have not yet been fully identified. In the present study, a yeast two-hybrid system was used to identify proteins that interact with the tetratricopeptide repeat (TPR) domain of KLC1. The results of the current study revealed an interaction between the TPR domain of KLC1 and FUN14 domain-containing protein 1 (FUNDC1), which is a mitochondrial outer membrane protein mediating hypoxia-induced mitophagy. FUNDC1 bound to the six TPR motif-containing regions of KLC1 and did not interact with KIF5B (a motor subunit of kinesin 1) and KIF3A (a motor subunit of kinesin 2) in the yeast two-hybrid assay. The cytoplasmic amino N-terminal domain of FUNDC1 is essential for interaction with KLC1. When co-expressed in HEK-293T cells, FUNDC1 co-localized with KLC1 and co-immunoprecipitated with KLC1, but not KIF5B. Collectively, these results indicate that KLC1 may potentially compete with LC3, a key component for autophagosome formation, to interact with FUNDC1.

19.
Int Immunopharmacol ; 42: 25-31, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27855304

RESUMO

Fibrosis is the final pathological outcome of many chronic kidney diseases and is quite common. Thus, development of effective anti-fibrotic agents is urgently needed. Although histone deacetylases (HDACs) have been reported to be involved in renal fibrosis, current HDAC inhibitors are unsatisfactory anti-fibrosis drugs. Therefore, more potentially relevant anti-renal fibrosis HDAC inhibitors are needed. We initially found that non-cytotoxic concentrations of SB939 (pracinostat) had strong anti-fibrotic activity, drastically decreasing TGF-ß1-induced alpha smooth muscle actin (α-SMA) expression in the NRK renal fibroblast cell line. Similar anti-fibrotic activity of SB939 on epithelial-to-mesenchymal transition (EMT) was confirmed using the HK-2 human renal proximal tubular epithelial cell line. SB939 inhibited Smad-independent TGF-ß signaling involving the MAPK and PI3K/AKT pathways. To evaluate in vivo anti-fibrotic activity, we administered SB939 in a unilateral ureteric obstruction (UUO) model. SB939 treatment markedly inhibited the accumulation of α-SMA and tissue injury. Inflammatory and pro-fibrotic cytokines in the obstructed kidney were also significantly decreased by SB939 treatment. Our results suggest that SB939 might be a promising therapeutic drug for preventing renal fibrosis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Benzimidazóis/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Nefropatias/tratamento farmacológico , Rim/efeitos dos fármacos , Miofibroblastos/efeitos dos fármacos , Obstrução Ureteral/tratamento farmacológico , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Fibrose , Humanos , Rim/patologia , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/fisiologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
20.
Food Sci Biotechnol ; 26(1): 195-200, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30263528

RESUMO

Sesamol is a phenol derivative of sesame oil and a potent anti-oxidant, anti-inflammatory, anti-hepatotoxic, and anti-aging compound. We investigated the effects of sesamol on the molecular mechanisms of adipogenesis in 3T3-L1 preadipocytes. The intracellular lipid accumulation accompanied by increased extracellular release of free glycerol was decreased during differentiation on treating 3T3-L1 with sesamol. Sesamol treatment on 3T3-L1 inhibited adipogenic differentiation by down-regulating adipogenesis-related factors (C/EBPα, PPARγ, and SREBP-1). Lipid accumulation was repressed by decreasing fatty acid synthase and by up-regulating lipolysis-response genes (HSL and LPL). The molecular mechanisms of sesamol-induced inhibition in adipogenesis were mediated by increased levels of phosphorylated adenosine monophosphate-activated protein kinase and its substrate acetyl-CoA carboxylase. Sesamol treatment, in turn, modulated the different members of the mitogenactivated protein kinase family by suppressing phosphorylation of ERK 1/2 and JNK and by increasing the phosphorylation of p38. In summary, sesamol inhibits adipogenic differentiation by reducing phosphorylation levels of ERK 1/2 and JNK while inducing lipolysis by activating p38 and AMPK. Our results demonstrate that the molecular mechanisms of in vitro anti-obesity effects of sesamol are due to the combined effects of preventing both lipid accumulation and adipogenesis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa