Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 34(2): 222-225, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33118857

RESUMO

Coniothyrium minitans (synonym, Paraphaeosphaeria minitans) is a highly specific mycoparasite of the wide host range crop pathogen Sclerotinia sclerotiorum. The capability of C. minitans to destroy the sclerotia of S. sclerotiorum has been well recognized and it is available as a widely used biocontrol product Contans WG. We present the draft genome sequence of C. minitans Conio (IMI 134523), which has previously been used in extensive studies that formed part of a registration package of the commercial product. This work provides a distinctive resource for further research into the molecular basis of mycoparasitism to harness the biocontrol potential of C. minitans.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos , Genoma Fúngico , Ascomicetos/genética , Produtos Agrícolas/microbiologia , Genoma Fúngico/genética , Interações Microbianas/genética
2.
Int J Mol Sci ; 19(4)2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29584668

RESUMO

Vibrio cholerae ATP-binding cassette transporter VcaM (V. cholerae ABC multidrug resistance pump) has previously been shown to confer resistance to a variety of medically important drugs. In this study, we set to analyse its properties both in vitro in detergent-solubilised state and in vivo to differentiate its dependency on auxiliary proteins for its function. We report the first detailed kinetic parameters of purified VcaM and the rate of phosphate (Pi) production. To determine the possible functional dependencies of VcaM on the tripartite efflux pumps we then utilized different E. coli strains lacking the principal secondary transporter AcrB (Acriflavine resistance protein), as well as cells lacking the outer membrane factor (OMF) TolC (Tolerance to colicins). Consistent with the ATPase function of VcaM we found it to be susceptible to sodium orthovanadate (NaOV), however, we also found a clear dependency of VcaM function on TolC. Inhibitors targeting secondary active transporters had no effects on either VcaM-conferred resistance or Hoechst 33342 accumulation, suggesting that VcaM might be capable of engaging with the TolC-channel without periplasmic mediation by additional transporters. Our findings are indicative of VcaM being capable of a one-step substrate translocation from cytosol to extracellular space utilising the TolC-channel, making it the only multidrug ABC-transporter outside of the MacB-family with demonstrable TolC-dependency.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Vibrio cholerae/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Trifosfato de Adenosina/química , Clonagem Molecular , Citosol/metabolismo , Farmacorresistência Bacteriana Múltipla , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Espaço Extracelular/metabolismo , Técnicas de Inativação de Genes , Hidrólise , Fosfatos/metabolismo , Vanadatos/farmacologia , Vibrio cholerae/genética
3.
Food Microbiol ; 59: 205-12, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27375261

RESUMO

Clostridium sporogenes is a non-pathogenic close relative and surrogate for Group I (proteolytic) neurotoxin-producing Clostridium botulinum strains. The exosporium, the sac-like outermost layer of spores of these species, is likely to contribute to adhesion, dissemination, and virulence. A paracrystalline array, hairy nap, and several appendages were detected in the exosporium of C. sporogenes strain NCIMB 701792 by EM and AFM. The protein composition of purified exosporium was explored by LC-MS/MS of tryptic peptides from major individual SDS-PAGE-separated protein bands, and from bulk exosporium. Two high molecular weight protein bands both contained the same protein with a collagen-like repeat domain, the probable constituent of the hairy nap, as well as cysteine-rich proteins CsxA and CsxB. A third cysteine-rich protein (CsxC) was also identified. These three proteins are also encoded in C. botulinum Prevot 594, and homologues (75-100% amino acid identity) are encoded in many other Group I strains. This work provides the first insight into the likely composition and organization of the exosporium of Group I C. botulinum spores.


Assuntos
Proteínas de Bactérias/química , Clostridium botulinum/química , Clostridium/química , Esporos Bacterianos/química , Eletroforese em Gel de Poliacrilamida , Homologia de Sequência de Aminoácidos , Esporos Bacterianos/metabolismo , Esporos Bacterianos/ultraestrutura , Espectrometria de Massas em Tandem
4.
Mol Microbiol ; 88(3): 590-602, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23565750

RESUMO

The MtrCDE multidrug pump, from Neisseria gonorrhoeae, is assembled from the inner and outer membrane proteins MtrD and MtrE, which are connected by the periplasmic membrane fusion protein MtrC. Although it is clear that MtrD delivers drugs to the channel of MtrE, it remains unclear how drug delivery and channel opening are connected. We used a vancomycin sensitivity assay to test for opening of the MtrE channel. Cells expressing MtrE or MtrE-E434K were insensitive to vancomycin; but became moderately and highly sensitive to vancomycin respectively, when coexpressed with MtrC, suggesting that the MtrE channel opening requires MtrC binding and is energy-independent. Cells expressing wild-type MtrD, in an MtrCE background, were vancomycin-insensitive, but moderately sensitive in an MtrCE-E434K background. The mutation of residues involved in proton translocation inactivated MtrD and abolished drug efflux, rendered both MtrE and MtrE-E434K vancomycin-insensitive; imply that the pump-component interactions are preserved, and that the complex is stable in the absence of proton flux, thus sealing the open end of MtrE. Following the energy-dependent dissociation of the tripartite complex, the MtrE channel is able to reseal, while MtrE-E434K is unable to do so, resulting in the vancomycin-sensitive phenotype. Thus, our findings suggest that opening of the OMP via interaction with the MFP is energy-independent, while both drug export and complex dissociation require active proton flux.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Lipoproteínas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Neisseria gonorrhoeae/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Lipoproteínas/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Mutação , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/metabolismo , Plasmídeos/genética , Vancomicina/farmacologia
5.
J Biol Chem ; 286(30): 26900-12, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21610073

RESUMO

The multiple transferable resistance (mTR) pump from Neisseria gonorrhoeae MtrCDE multidrug pump is assembled from the inner and outer membrane proteins MtrD and MtrE and the periplasmic membrane fusion protein MtrC. Previously we established that while there is a weak interaction of MtrD and MtrE, MtrC binds with relatively high affinity to both MtrD and MtrE. MtrD conferred antibiotic resistance only when it was expressed with MtrE and MtrC, suggesting that these proteins form a functional tripartite complex in which MtrC bridges MtrD and MtrE. Furthermore, we demonstrated that MtrC interacts with an intraprotomer groove on the surface of MtrE, inducing channel opening. However, a second groove is apparent at the interface of the MtrE subunits, which might also be capable of engaging MtrC. We have now established that MtrC can be cross-linked to cysteines placed in this interprotomer groove and that mutation of residues in the groove impair the ability of the pump to confer antibiotic resistance by locking MtrE in the closed channel conformation. Moreover, MtrE K390C forms an intermolecular disulfide bond with MtrC E149C locking MtrE in the open channel conformation, suggesting that a functional salt bridge forms between these residues during the transition from closed to open channel conformations. MtrC forms dimers that assemble into hexamers, and electron microscopy studies of single particles revealed that these hexamers are arranged into ring-like structures with an internal aperture sufficiently large to accommodate the MtrE trimer. Cross-linking of single cysteine mutants of MtrC to stabilize the dimer interface in the presence of MtrE, trapped an MtrC-MtrE complex with a molecular mass consistent with a stoichiometry of 3:6 (MtrE(3)MtrC(6)), suggesting that dimers of MtrC interact with MtrE, presumably by binding to the two grooves. As both MtrE and MtrD are trimeric, our studies suggest that the functional pump is assembled with a stoichiometry of 3:6:3.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/fisiologia , Lipoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Complexos Multiproteicos/metabolismo , Neisseria gonorrhoeae/metabolismo , Substituição de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Lipoproteínas/genética , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Complexos Multiproteicos/genética , Mutação de Sentido Incorreto , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/ultraestrutura , Ligação Proteica , Estrutura Quaternária de Proteína
6.
J Biol Chem ; 286(7): 5484-93, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21115481

RESUMO

The multiple transferable resistance (MTR) pump, from Neisseria gonorrhoeae, is typical of the specialized machinery used to translocate drugs across the inner and outer membranes of Gram-negative bacteria. It consists of a tripartite complex composed of an inner-membrane transporter, MtrD, a periplasmic membrane fusion protein, MtrC, and an outer-membrane channel, MtrE. We have expressed the components of the pump in Escherichia coli and used the antibiotic vancomycin, which is too large to cross the outer-membrane by passive diffusion, to test for opening of the MtrE channel. Cells expressing MtrCDE are not susceptible to vancomycin, indicating that the channel is closed; but become susceptible to vancomycin in the presence of transported substrates, consistent with drug-induced opening of the MtrE channel. A mutational analysis identified residues Asn-198, Glu-434, and Gln-441, lining an intraprotomer groove on the surface of MtrE, to be important for pump function; mutation of these residues yielded cells that were sensitive to vancomycin. Pull-down assays and micro-calorimetry measurements indicated that this functional impairment is not due to the inability of MtrC to interact with the MtrE mutants; nor was it due to the MtrE mutants adopting an open conformation, because cells expressing these MtrE mutants alone are relatively insensitive to vancomycin. However, cells expressing the MtrE mutants with MtrC are sensitive to vancomycin, indicating that residues lining the intra-protomer groove control opening of the MtrE channel in response to binding of MtrC.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/fisiologia , Lipoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Neisseria gonorrhoeae/metabolismo , Substituição de Aminoácidos , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Escherichia coli , Expressão Gênica , Lipoproteínas/genética , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Mutação de Sentido Incorreto , Neisseria gonorrhoeae/genética , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vancomicina/farmacologia
7.
mSphere ; 5(4)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611700

RESUMO

Spores, the infectious agents of many Firmicutes, are remarkably resilient cell forms. Even distant relatives can have similar spore architectures although some display unique features; they all incorporate protective proteinaceous envelopes. We previously found that Bacillus spores can achieve these protective properties through extensive disulfide cross-linking of self-assembled arrays of cysteine-rich proteins. We predicted that this could be a mechanism employed by spore formers in general, even those from other genera. Here, we tested this by revealing in nanometer detail how the outer envelope (exosporium) in Clostridium sporogenes (surrogate for C. botulinum group I), and in other clostridial relatives, forms a hexagonally symmetric semipermeable array. A cysteine-rich protein, CsxA, when expressed in Escherichia coli, self-assembles into a highly thermally stable structure identical to that of the native exosporium. Like the exosporium, CsxA arrays require harsh "reducing" conditions for disassembly. We conclude that in vivo, CsxA self-organizes into a highly resilient, disulfide cross-linked array decorated with additional protein appendages enveloping the forespore. This pattern is remarkably similar to that in Bacillus spores, despite a lack of protein homology. In both cases, intracellular disulfide formation is favored by the high lattice symmetry. We have identified cysteine-rich proteins in many distantly related spore formers and propose that they may adopt a similar strategy for intracellular assembly of robust protective structures.IMPORTANCE Bacteria such as those causing botulism and anthrax survive harsh conditions and spread disease as spores. Distantly related species have similar spore architectures with protective proteinaceous layers aiding adhesion and targeting. The structures that confer these common properties are largely unstudied, and the proteins involved can be very dissimilar in sequence. We identify CsxA as a cysteine-rich protein that self-assembles in a two-dimensional lattice enveloping the spores of several Clostridium species. We show that apparently unrelated cysteine-rich proteins from very different species can self-assemble to form remarkably similar and robust structures. We propose that diverse cysteine-rich proteins identified in the genomes of a broad range of spore formers may adopt a similar strategy for assembly.


Assuntos
Clostridium botulinum/fisiologia , Clostridium/fisiologia , Esporos Bacterianos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Cisteína/metabolismo , Escherichia coli/genética
8.
PLoS One ; 10(9): e0136866, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26334875

RESUMO

The human pathogenic fungus Paracoccidioides brasiliensis (Pb) undergoes a morphological transition from a saprobic mycelium to pathogenic yeast that is controlled by the cAMP-signaling pathway. There is a change in the expression of the Gß-protein PbGpb1, which interacts with adenylate cyclase, during this morphological transition. We exploited the fact that the cAMP-signaling pathway of Saccharomyces cerevisiae does not include a Gß-protein to probe the functional role of PbGpb1. We present data that indicates that PbGpb1 and the transcriptional regulator PbTupA both bind to the PKA protein PbTpk2. PbTPK2 was able to complement a TPK2Δ strain of S. cerevisiae, XPY5a/α, which was defective in pseudohyphal growth. Whilst PbGPB1 had no effect on the parent S. cerevisiae strain, MLY61a/α, it repressed the filamentous growth of XPY5a/α transformed with PbTPK2, behaviour that correlated with a reduced expression of the floculin FLO11. In vitro, PbGpb1 reduced the kinase activity of PbTpk2, suggesting that inhibition of PbTpk2 by PbGpb1 reduces the level of expression of Flo11, antagonizing the filamentous growth of the cells. In contrast, expressing the co-regulator PbTUPA in XPY5a/α cells transformed with PbTPK2, but not untransformed cells, induced hyperfilamentous growth, which could be antagonized by co-transforming the cells with PbGPB1. PbTUPA was unable to induce the hyperfilamentous growth of a FLO8Δ strain, suggesting that PbTupA functions in conjunction with the transcription factor Flo8 to control Flo11 expression. Our data indicates that P. brasiliensis PbGpb1 and PbTupA, both of which have WD/ß-propeller structures, bind to PbTpk2 to act as antagonistic molecular switches of cell morphology, with PbTupA and PbGpb1 inducing and repressing filamentous growth, respectively. Our findings define a potential mechanism for controlling the morphological switch that underpins the virulence of dimorphic fungi.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Paracoccidioides/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Teste de Complementação Genética , Morfogênese , Paracoccidioides/enzimologia , Paracoccidioides/genética , Paracoccidioides/crescimento & desenvolvimento , Ligação Proteica , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
9.
Mol Microbiol ; 65(3): 761-79, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17635191

RESUMO

Paracoccidioides brasiliensis is a human pathogenic fungus that switches from a saprobic mycelium to a pathogenic yeast. Consistent with the morphological transition being regulated by the cAMP-signalling pathway, there is an increase in cellular cAMP levels both transiently at the onset (< 24 h) and progressively in the later stages (> 120 h) of the transition to the yeast form, and this transition can be modulated by exogenous cAMP. We have cloned the cyr1 gene encoding adenylate cyclase (AC) and established that its transcript levels correlate with cAMP levels. In addition, we have cloned the genes encoding three Galpha (Gpa1-3), Gbeta (Gpb1) and Ggamma (Gpg1) G proteins. Gpa1 and Gpb1 interact with one another and the N-terminus of AC, but neither Gpa2 nor Gpa3 interacted with Gpb1 or AC. The interaction of Gpa1 with Gpb1 was blocked by GTP, but its interaction with AC was independent of bound nucleotide. The transcript levels for gpa1, gpb1 and gpg1 were similar in mycelium, but there was a transient excess of gpb1 during the transition, and an excess of gpa1 in yeast. We have interpreted our findings in terms of a novel signalling mechanism in which the activity of AC is differentially modulated by Gpa1 and Gpb1 to maintain the signal over the 10 days needed for the morphological switch.


Assuntos
AMP Cíclico/metabolismo , Paracoccidioides/citologia , Paracoccidioides/patogenicidade , Adenilil Ciclases/metabolismo , Bucladesina/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Micélio/citologia , Micélio/efeitos dos fármacos , Paracoccidioides/efeitos dos fármacos , Paracoccidioides/enzimologia , Ligação Proteica/efeitos dos fármacos , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa