Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Muscle Nerve ; 69(1): 103-114, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37929655

RESUMO

INTRODUCTION/AIMS: Prior studies have emphasized the role of inflammation in the response to injury and muscle regeneration, but little emphasis has been placed on characterizing the relationship between innate inflammation, pain, and functional impairment. The aim of our study was to determine the contribution of innate immunity to prolonged pain following muscle contusion. METHODS: We developed a closed-impact mouse model of muscle contusion and a macrophage-targeted near-infrared fluorescent nanoemulsion. Closed-impact contusions were delivered to the lower left limb. Pain sensitivity, gait dysfunction, and inflammation were assessed in the days and weeks post-contusion. Macrophage accumulation was imaged in vivo by injecting i.v. near-infrared nanoemulsion. RESULTS: Despite hindpaw hypersensitivity persisting for several weeks, disruptions to gait and grip strength typically resolved within 10 days of injury. Using non-invasive imaging and immunohistochemistry, we show that macrophage density peaks in and around the affected muscle 3 day post-injury and quickly subsides. However, macrophage density in the ipsilateral sciatic nerve and dorsal root ganglia (DRG) increases more gradually and persists for at least 14 days. DISCUSSION: In this study, we demonstrate pain sensitivity is influenced by the degree of lower muscle contusion, without significant changes to gait and grip strength. This may be due to modulation of pain signaling by macrophage proliferation in the sciatic nerve, upstream from the site of injury. Our work suggests chronic pain developing from muscle contusion is driven by macrophage-derived neuroinflammation in the peripheral nervous system.


Assuntos
Contusões , Dor , Camundongos , Animais , Macrófagos , Contusões/diagnóstico por imagem , Músculos , Inflamação
2.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298117

RESUMO

Given decades of neuroinflammatory pain research focused only on males, there is an urgent need to better understand neuroinflammatory pain in females. This, paired with the fact that currently there is no long-term effective treatment for neuropathic pain furthers the need to evaluate how neuropathic pain develops in both sexes and how it can be relieved. Here we show that chronic constriction injury of the sciatic nerve caused comparable levels of mechanical allodynia in both sexes. Using a COX-2 inhibiting theranostic nanoemulsion with increased drug loading, both sexes achieved similar reduction in mechanical hypersensitivity. Given that both sexes have improved pain behavior, we specifically explored differential gene expression between sexes in the dorsal root ganglia (DRG) during pain and relief. Total RNA from the DRG revealed a sexually dimorphic expression for injury and relief caused by COX-2 inhibition. Of note, both males and females experience increased expression of activating transcription factor 3 (Atf3), however, only the female DRG shows decreased expression following drug treatment. Alternatively, S100A8 and S100A9 expression appear to play a sex specific role in relief in males. The sex differences in RNA expression reveal that comparable behavior does not necessitate the same gene expression.


Assuntos
Neuralgia , Caracteres Sexuais , Feminino , Humanos , Masculino , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , RNA-Seq , Medicina de Precisão , Neuralgia/tratamento farmacológico , Neuralgia/genética , Neuralgia/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/genética , Hiperalgesia/metabolismo , Expressão Gênica , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , RNA/metabolismo , Gânglios Espinais/metabolismo
3.
J Neuroinflammation ; 18(1): 299, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34949179

RESUMO

BACKGROUND: The incidence of diabetes and diabetic peripheral neuropathy continues to rise, and studies have shown that macrophages play an important role in their pathogenesis. To date, macrophage tracking has largely been achieved using genetically-encoded fluorescent proteins. Here we present a novel two-color fluorescently labeled perfluorocarbon nanoemulsion (PFC-NE) designed to monitor phagocytic macrophages in diabetic neuropathy in vitro and in vivo using non-invasive near-infrared fluorescent (NIRF) imaging and fluorescence microscopy. METHODS: Presented PFC-NEs were formulated with perfluorocarbon oil surrounded by hydrocarbon shell carrying two fluorescent dyes and stabilized with non-ionic surfactants. In vitro assessment of nanoemulsions was performed by measuring fluorescent signal stability, colloidal stability, and macrophage uptake and subsequent viability. The two-color PFC-NE was administered to Leprdb/db and wild-type mice by tail vein injection, and in vivo tracking of the nanoemulsion was performed using both NIRF imaging and confocal microscopy to assess its biodistribution within phagocytic macrophages along the peripheral sensory apparatus of the hindlimb. RESULTS: In vitro experiments show two-color PFC-NE demonstrated high fluorescent and colloidal stability, and that it was readily incorporated into RAW 264.7 macrophages. In vivo tracking revealed distribution of the two-color nanoemulsion to macrophages within most tissues of Leprdb/db and wild-type mice which persisted for several weeks, however it did not cross the blood brain barrier. Reduced fluorescence was seen in sciatic nerves of both Leprdb/db and wild-type mice, implying that the nanoemulsion may also have difficulty crossing an intact blood nerve barrier. Additionally, distribution of the nanoemulsion in Leprdb/db mice was reduced in several tissues as compared to wild-type mice. This reduction in biodistribution appears to be caused by the increased number of adipose tissue macrophages in Leprdb/db mice. CONCLUSIONS: The nanoemulsion in this study has the ability to identify phagocytic macrophages in the Leprdb/db model using both NIRF imaging and fluorescence microscopy. Presented nanoemulsions have the potential for carrying lipophilic drugs and/or fluorescent dyes, and target inflammatory macrophages in diabetes. Therefore, we foresee these agents becoming a useful tool in both imaging inflammation and providing potential treatment in diabetic peripheral neuropathy.


Assuntos
Neuropatias Diabéticas/patologia , Macrófagos/patologia , Nanoestruturas , Tecido Adiposo/patologia , Animais , Emulsões , Corantes Fluorescentes , Fluorocarbonos , Masculino , Camundongos , Microscopia , Doenças do Sistema Nervoso Periférico/patologia , Fagocitose , Receptores para Leptina/genética , Espectroscopia de Luz Próxima ao Infravermelho , Distribuição Tecidual
4.
Int J Mol Sci ; 20(21)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31652890

RESUMO

The neuroinflammatory response to peripheral nerve injury is associated with chronic pain and significant changes in the molecular expression profiles of mRNAs in neurons, glia and infiltrating immune cells. Chronic constriction injury (CCI) of the rat sciatic nerve provides an opportunity to mimic neuropathic injury and quantitatively assess behavior and differential gene expression in individual animals. Previously, we have shown that a single intravenous injection of nanoemulsion containing celecoxib (0.24 mg/kg) reduces inflammation of the sciatic nerve and relieves pain-like behavior for up to 6 days. Here, we use this targeted therapy to explore the impact on mRNA expression changes in both pain and pain-relieved states. Sciatic nerve tissue recovered from CCI animals is used to evaluate the mRNA expression profiles utilizing quantitative PCR. We observe mRNA changes consistent with the reduced recruitment of macrophages evident by a reduction in chemokine and cytokine expression. Furthermore, genes associated with adhesion of macrophages, as well as changes in the neuronal and glial mRNAs are observed. Moreover, genes associated with neuropathic pain including Maob, Grin2b/NMDAR2b, TrpV3, IL-6, Cacna1b/Cav2.2, Itgam/Cd11b, Scn9a/Nav1.7, and Tac1 were all found to respond to the celecoxib loaded nanoemulsion during pain relief as compared to those animals that received drug-free vehicle. These results demonstrate that by targeting macrophage production of PGE2 at the site of injury, pain relief includes partial reversal of the gene expression profiles associated with chronic pain.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Regulação da Expressão Gênica , Macrófagos/metabolismo , Neuralgia/tratamento farmacológico , Traumatismos dos Nervos Periféricos/patologia , RNA Mensageiro/metabolismo , Nervo Isquiático/metabolismo , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Celecoxib/química , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Quimiocinas/genética , Quimiocinas/metabolismo , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Emulsões/química , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Nanoestruturas/química , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Ratos , Ratos Sprague-Dawley
5.
Molecules ; 24(11)2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31151246

RESUMO

The development of pharmaceutical nanoformulations has accelerated over the past decade. However, the nano-sized drug carriers continue to meet substantial regulatory and clinical translation challenges. In order to address some of these key challenges in early development, we adopted a quality by design approach to develop robust predictive mathematical models for microemulsion formulation, manufacturing, and scale-up. The presented approach combined risk management, design of experiments, multiple linear regression (MLR), and logistic regression to identify a design space in which microemulsion colloidal properties were dependent solely upon microemulsion composition, thus facilitating scale-up operations. Developed MLR models predicted microemulsion diameter, polydispersity index (PDI), and diameter change over 30 days storage, while logistic regression models predicted the probability of a microemulsion passing quality control testing. A stable microemulsion formulation was identified and successfully scaled up tenfold to 1L without impacting droplet diameter, PDI, or stability.


Assuntos
Composição de Medicamentos , Emulsões , Modelos Lineares , Modelos Logísticos , Composição de Medicamentos/métodos , Estabilidade de Medicamentos
6.
Pharm Dev Technol ; 24(6): 700-710, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30724654

RESUMO

Multiple linear regression (MLR) modeling as a novel methodological advancement for design, development, and optimization of perfluorocarbon nanoemulsions (PFC NEs) is presented. The goal of the presented work is to develop MLR methods applicable to design, development, and optimization of PFC NEs in broad range of biomedical uses. Depending on the intended use of PFC NEs as either therapeutics or diagnostics, NE composition differs in respect to specific applications (e.g. magnetic resonance imaging, drug delivery, etc). PFC NE composition can significantly impact on PFC NE droplet size which impacts the NE performance and quality. We demonstrated earlier that microfluidization combined with sonication produces stable emulsions with high level of reproducibility. The goal of the presented work was to establish correlation between droplet size and composition in complex PFC-in-oil-in-water NEs while manufacturing process parameters are kept constant. Under these conditions, we demonstrate that MLR model can predict droplet size based on formulation variables such as amount and type of PFC oil and hydrocarbon oil. To the best of our knowledge, this is the first report where PFC NE composition was directly related to its colloidal properties and MLR used to predict colloidal properties from composition variables.


Assuntos
Coloides/química , Emulsões/química , Fluorocarbonos/química , Modelos Lineares , Modelos Químicos , Óleos/química , Tamanho da Partícula , Solubilidade , Sonicação , Água/química
7.
AAPS PharmSciTech ; 20(2): 65, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30627887

RESUMO

Pain nanomedicine is an emerging field in response to current needs of addressing the opioid crisis in the USA and around the world. Our group has focused on the development of macrophage-targeted perfluorocarbon nanoemulsions as inflammatory pain nanomedicines over the past several years. We present here, for the first time, a quality by design approach used to design pain nanomedicine. Specifically, we used failure mode, effects, and criticality analysis (FMECA) which identified the process and composition parameters that were most likely to impact nanoemulsion critical quality attributes (CQAs). From here, we applied a unique combination approach that compared multiple linear regression, boosted decision tree regression, and partial least squares regression methods in combination with correlation plots. The presented combination approach allowed for in-depth analyses of which formulation steps in the nanoemulsification processes control nanoemulsion droplet diameter, stability, and drug loading. We identified that increase in solubilizer (transcutol) content increased drug loading and decreased nanoemulsion stability. This was mitigated by inclusion of perfluorocarbon oil in the internal phase. We observed negative correlation (R2 = 0.4357, p value 0.0054) between the amount of PCE and the percent diameter increase (destabilization), and no correlation between processing parameters and percent diameter increase over time. Further, we identified that increased sonication time decreases nanoemulsion drug loading but does not significantly impact droplet diameter or stability. We believe the methods presented here can be useful in the development of various nanomedicines to produce higher-quality products with enhanced manufacturing and design control.


Assuntos
Analgésicos não Narcóticos/síntese química , Desenvolvimento de Medicamentos/métodos , Emulsões/síntese química , Fluorocarbonos/síntese química , Nanopartículas/química , Nanomedicina Teranóstica/métodos , Celecoxib/síntese química , Sonicação
8.
Curr Opin Organ Transplant ; 24(6): 726-732, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31689262

RESUMO

PURPOSE OF REVIEW: The advent of clinical vascularized composite allotransplantation (VCA), offers hope for whole eye transplantation (WET) in patients with devastating vison loss that fails or defies current treatment options. Optic nerve regeneration and reintegration remain the overarching hurdles to WET. However, the realization of WET may indeed be limited by our lack of understanding of the singular immunological features of the eye as pertinent to graft survival and functional vision restoration in the setting of transplantation. RECENT FINDINGS: Like other VCA, such as the hand or face, the eye includes multiple tissues with distinct embryonic lineage and differential antigenicity. The ultimate goal of vision restoration through WET requires optimal immune modulation of the graft for successful optic nerve regeneration. Our team is exploring barriers to our understanding of the immunology of the eye in the context of WET including the role of immune privilege and lymphatic drainage on rejection, as well as the effects ischemia, reperfusion injury and rejection on optic nerve regeneration. SUMMARY: Elucidation of the unique immunological responses in the eye and adnexa after WET will provide foundational clues that will help inform therapies that prevent immune rejection without hindering optic nerve regeneration or reintegration.


Assuntos
Olho/imunologia , Olho/transplante , Sobrevivência de Enxerto/imunologia , Humanos
9.
BMC Med Educ ; 16: 135, 2016 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-27142616

RESUMO

BACKGROUND: Most medical schools fail to provide adequate training of clinicians in the treatment of pain. Similarly, despite the fact that over 1/3 of Americans suffer from chronic pain, National Institutes of Health (NIH) funding for pain represents only ~1% of the NIH budget. These issues may dissuade students from pursing pain in their clinical and research careers. To address these gaps in training and funding, we argue that exposing students to pain science early in their careers, at the undergraduate level, may be an effective method to develop a pipeline for future pain clinicians and scientists. To highlight our argument, we will describe our recent successful implementation of a cross-disciplinary and community-engaged biomedical summer research program. The Pain Undergraduate Research Experience (PURE) summer program involved both off-site and on-site experiences to expose undergraduate students to the range of careers in the pain field from basic science to clinical practice. The objective of the 10-week long PURE program was to evaluate whether a combination of basic science research, clinical practice visits, and patient interactions would increase student understanding of and exposure to the underlying science of pain. METHODS: A pre-post cohort study was used without a comparison group. Entry and exit surveys were used to evaluate students' perceptions about pain clinical practice and research, student interest in pain, and student confidence about communicating about pain and doing basic science pain research. RESULTS: Students reported significant increases to a number of questions in the survey. Questions were scored on 5 point Likert scales and there was significant increases in student understanding of what life is like with chronic pain (2.6 vs 4.3 post survey), their confidence in explaining pain to a patient (2.8 vs 4.1) or researcher (2.8 vs 4), and their comfort with pain terminology(2.8 vs 3.9). CONCLUSIONS: With the PURE program, we wanted to entice top undergraduates to consider pain as a future area of study, practice, and/or research. We present a model that can be easily implemented at research universities throughout the United States.


Assuntos
Pesquisa Biomédica , Currículo , Educação de Graduação em Medicina , Manejo da Dor , Estudos de Coortes , Feminino , Humanos , Masculino , Estados Unidos
10.
Clin Immunol ; 160(1): 59-70, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25959685

RESUMO

Targeting macrophages for therapeutic and diagnostic purposes is an attractive approach applicable to multiple diseases. Here, we present a theranostic nanoemulsion platform for simultaneous delivery of an anti-inflammatory drug (celecoxib) to macrophages and monitoring of macrophage migration patterns by optical imaging, as measurement of changes in inflammation. The anti-inflammatory effect of the theranostic nanoemulsions was evaluated in a mouse inflammation model induced with complete Freund's adjuvant (CFA). Nanoemulsions showed greater accumulation in the inflamed vs. control paw, with histology confirming their specific localization in CD68 positive macrophages expressing cyclooxygenase-2 (COX-2) compared to neutrophils. With a single dose administration of the celecoxib-loaded theranostic, we observed a reduction in fluorescence in the paw with time, corresponding to a reduction in macrophage infiltration. Our data strongly suggest that delivery of select agents to infiltrating macrophages can potentially lead to new treatments of inflammatory diseases where macrophage behavior changes are monitored in vivo.


Assuntos
Celecoxib/administração & dosagem , Inibidores de Ciclo-Oxigenase 2/administração & dosagem , Portadores de Fármacos , Inflamação/tratamento farmacológico , Macrófagos/imunologia , Nanotecnologia/métodos , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Emulsões , Feminino , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Camundongos , Neutrófilos/imunologia
11.
Mol Pharm ; 11(6): 1919-29, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24779700

RESUMO

The success of targeted cancer therapy largely relies upon the selection of target and the development of efficient therapeutic agents that specifically bind to the target. In the current study, we chose a cannabinoid CB2 receptor (CB2R) as a new target and used a CB2R-targeted photosensitizer, IR700DX-mbc94, for phototherapy treatment. IR700DX-mbc94 was prepared by conjugating a photosensitizer, IR700DX, to mbc94, whose binding specificity to CB2R has been previously demonstrated. We found that phototherapy treatment using IR700DX-mbc94 greatly inhibited the growth of CB2R positive tumors but not CB2R negative tumors. In addition, phototherapy treatment with nontargeted IR700DX did not show significant therapeutic effect. Similarly, treatment with IR700DX-mbc94 without light irradiation or light irradiation without the photosensitizer showed no tumor-inhibitory effect. Taken together, IR700DX-mbc94 is a promising phototherapy agent with high target-specificity. Moreover, CB2R appears to have great potential as a phototherapeutic target for cancer treatment.


Assuntos
Indóis/farmacologia , Neoplasias/tratamento farmacológico , Compostos de Organossilício/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Receptor CB2 de Canabinoide/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Fototerapia/métodos
12.
J Fluor Chem ; 162: 38-44, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24976645

RESUMO

This is the first report where PFPAE aromatic conjugates and perfluoro(polyethylene glycol dimethyl ether) are combined and formulated as nanoemulsions with droplet size below 100 nm. A perfluoropolyalkylether (PFPAE) aromatic conjugate, 2-(poly(hexafluoropropylene oxide)) perfluoropropyl benzene, was used as fluorophilic-hydrophilic diblock (FLD) aimed at stabilizing perfluoro(polyethylene glycol dimethyl ether) nanoemulsions. Its effects on colloidal behaviors in triphasic (organic/fluorous/aqueous) nanoemulsions were studied. The addition of FLD construct to fluorous phase led to decrease in PFPAE nanoemulsion droplet size to as low as 85 nm. Prepared nanoemulsions showed high colloidal stability. Our results suggest that these materials represent viable novel approach to fluorous colloid systems design with potential for biomedical and synthetic applications.

13.
Micromachines (Basel) ; 15(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38675344

RESUMO

The development of biomaterials for protein delivery is an emerging field that spans materials science, bioengineering, and medicine. In this review, we highlight the immense potential of protein-delivering biomaterials as therapeutic options and discuss the multifaceted challenges inherent to the field. We address current advancements and approaches in protein delivery that leverage stimuli-responsive materials, harness advanced fabrication techniques like 3D printing, and integrate nanotechnologies for greater targeting and improved stability, efficacy, and tolerability profiles. We also discuss the demand for highly complex delivery systems to maintain structural integrity and functionality of the protein payload. Finally, we discuss barriers to clinical translation, such as biocompatibility, immunogenicity, achieving reliable controlled release, efficient and targeted delivery, stability issues, scalability of production, and navigating the regulatory landscape for such materials. Overall, this review summarizes insights from a survey of the current literature and sheds light on the interplay between innovation and the practical implementation of biomaterials for protein delivery.

14.
J Am Chem Soc ; 135(49): 18445-57, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24266634

RESUMO

We report the synthesis and formulation of unique perfluorocarbon (PFC) nanoemulsions enabling intracellular pH measurements in living cells via fluorescent microscopy and flow cytometry. These nanoemulsions are formulated to readily enter cells upon coincubation and contain two cyanine-based fluorescent reporters covalently bound to the PFC molecules, specifically Cy3-PFC and CypHer5-PFC conjugates. The spectral and pH-sensing properties of the nanoemulsions were characterized in vitro and showed the unaltered spectral behavior of dyes after formulation. In rat 9L glioma cells loaded with nanoemulsion, the local pH of nanoemulsions was longitudinally quantified using optical microscopy and flow cytometry and displayed a steady decrease in pH to a level of 5.5 over 3 h, indicating rapid uptake of nanoemulsion to acidic compartments. Overall, these reagents enable real-time optical detection of intracellular pH in living cells in response to pharmacological manipulations. Moreover, recent approaches for in vivo cell tracking using magnetic resonance imaging (MRI) employ intracellular PFC nanoemulsion probes to track cells using (19)F MRI. However, the intracellular fate of these imaging probes is poorly understood. The pH-sensing nanoemulsions allow the study of the fate of the PFC tracer inside the labeled cell, which is important for understanding the PFC cell loading dynamics, nanoemulsion stability and cell viability over time.


Assuntos
Emulsões , Fluorocarbonos/química , Concentração de Íons de Hidrogênio , Nanoestruturas , Citometria de Fluxo , Corantes Fluorescentes/química
15.
Pharmaceutics ; 15(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37111589

RESUMO

Perfluorocarbon nanoemulsions (PFC-NEs) are widely used as theranostic nanoformulations with fluorescent dyes commonly incorporated for tracking PFC-NEs in tissues and in cells. Here, we demonstrate that PFC-NE fluorescence can be fully stabilized by controlling their composition and colloidal properties. A quality-by-design (QbD) approach was implemented to evaluate the impact of nanoemulsion composition on colloidal and fluorescence stability. A full factorial, 12-run design of experiments was used to study the impact of hydrocarbon concentration and perfluorocarbon type on nanoemulsion colloidal and fluorescence stability. PFC-NEs were produced with four unique PFCs: perfluorooctyl bromide (PFOB), perfluorodecalin (PFD), perfluoro(polyethylene glycol dimethyl ether) oxide (PFPE), and perfluoro-15-crown-5-ether (PCE). Multiple linear regression modeling (MLR) was used to predict nanoemulsion percent diameter change, polydispersity index (PDI), and percent fluorescence signal loss as a function of PFC type and hydrocarbon content. The optimized PFC-NE was loaded with curcumin, a known natural product with wide therapeutic potential. Through MLR-supported optimization, we identified a fluorescent PFC-NE with stable fluorescence that is unaffected by curcumin, which is known to interfere with fluorescent dyes. The presented work demonstrates the utility of MLR in the development and optimization of fluorescent and theranostic PFC nanoemulsions.

16.
Bio Protoc ; 13(19): e4842, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37817906

RESUMO

Tracking macrophages by non-invasive molecular imaging can provide useful insights into the immunobiology of inflammatory disorders in preclinical disease models. Perfluorocarbon nanoemulsions (PFC-NEs) have been well documented in their ability to be taken up by macrophages through phagocytosis and serve as 19F magnetic resonance imaging (MRI) tracers of inflammation in vivo and ex vivo. Incorporation of near-infrared fluorescent (NIRF) dyes in PFC-NEs can help monitor the spatiotemporal distribution of macrophages in vivo during inflammatory processes, using NIRF imaging as a complementary methodology to MRI. Here, we discuss in depth how both colloidal and fluorescence stabilities of the PFC-NEs are essential for successful and reliable macrophage tracking in vivo and for their detection in excised tissues ex vivo by NIRF imaging. Furthermore, PFC-NE quality assures NIRF imaging reproducibility and reliability across preclinical studies, providing insights into inflammation progression and therapeutic response. Previous studies focused on assessments of colloidal property changes in response to stress and during storage as a means of quality control. We recently focused on the joint evaluation of both colloidal and fluorescence properties and their relationship to NIRF imaging outcomes. In this protocol, we summarize the key assessments of the fluorescent dye-labeled nanoemulsions, which include long-term particle size distribution monitoring as the measure of colloidal stability and monitoring of the fluorescence signal. Due to its simplicity and reproducibility, our protocols are easy to adopt for researchers to assess the quality of PFC-NEs for in vivo NIRF imaging applications.

17.
Sci Rep ; 13(1): 15229, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709807

RESUMO

Activated macrophages play a critical role in the orchestration of inflammation and inflammatory pain in several chronic diseases. We present here the first perfluorocarbon nanoemulsion (PFC NE) that is designed to preferentially target activated macrophages and can deliver up to three payloads (two fluorescent dyes and a COX-2 inhibitor). Folate receptors are overexpressed on activated macrophages. Therefore, we introduced a folate-PEG-cholesterol conjugate into the formulation. The incorporation of folate conjugate did not require changes in processing parameters and did not change the droplet size or fluorescent properties of the PFC NE. The uptake of folate-conjugated PFC NE was higher in activated macrophages than in resting macrophages. Flow cytometry showed that the uptake of folate-conjugated PFC NE occurred by both phagocytosis and receptor-mediated endocytosis. Furthermore, folate-conjugated PFC NE inhibited the release of proinflammatory cytokines (TNF-α and IL-6) more effectively than nonmodified PFC NE, while drug loading and COX-2 inhibition were comparable. The PFC NEs reported here were successfully produced on multiple scales, from 25 to 200 mL, and by using two distinct processors (microfluidizers: M110S and LM20). Therefore, folate-conjugated PFC NEs are viable anti-inflammatory theranostic nanosystems for macrophage drug delivery and imaging.


Assuntos
Fluorocarbonos , Medicina de Precisão , Ciclo-Oxigenase 2 , Macrófagos , Corantes Fluorescentes , Ácido Fólico
18.
Circ Cardiovasc Imaging ; 16(9): e014742, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37725674

RESUMO

Fluorine-19 (19F) magnetic resonance imaging is a unique quantitative molecular imaging modality that makes use of an injectable fluorine-containing tracer that generates the only visible 19F signal in the body. This hot spot imaging technique has recently been used to characterize a wide array of cardiovascular diseases and seen a broad range of technical improvements. Concurrently, its potential to be translated to the clinical setting is being explored. This review provides an overview of this emerging field and demonstrates its diagnostic potential, which shows promise for clinical translation. We will describe 19F magnetic resonance imaging hardware, pulse sequences, and tracers, followed by an overview of cardiovascular applications. Finally, the challenges on the road to clinical translation are discussed.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Humanos , Flúor , Sistema Cardiovascular/diagnóstico por imagem , Doenças Cardiovasculares/diagnóstico por imagem , Imagem Molecular
19.
Pharmaceutics ; 15(10)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37896130

RESUMO

Despite long-term immunosuppression, organ transplant recipients face the risk of immune rejection and graft loss. Tacrolimus (TAC, FK506, Prograf®) is an FDA-approved keystone immunosuppressant for preventing transplant rejection. However, it undergoes extensive first-pass metabolism and has a narrow therapeutic window, which leads to erratic bioavailability and toxicity. Local delivery of TAC directly into the graft, instead of systemic delivery, can improve safety, efficacy, and tolerability. Macrophages have emerged as promising therapeutic targets as their increased levels correlate with an increased risk of organ rejection and a poor prognosis post-transplantation. Here, we present a locally injectable drug delivery platform for macrophages, where TAC is incorporated into a colloidally stable nanoemulsion and then formulated as a reversibly thermoresponsive, pluronic-based nanoemulgel (NEG). This novel formulation is designed to undergo a sol-to-gel transition at physiological temperature to sustain TAC release in situ at the site of local application. We also show that TAC-NEG mitigates the release of proinflammatory cytokines and nitric oxide from lipopolysaccharide (LPS)-activated macrophages. To the best of our knowledge, this is the first TAC-loaded nanoemulgel with demonstrated anti-inflammatory effects on macrophages in vitro.

20.
J Fluor Chem ; 137: 27-33, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22675234

RESUMO

Theranostic nanoparticle development recently took center stage in the field of drug delivery nanoreagent design. Theranostic nanoparticles combine therapeutic delivery systems (liposomes, micelles, nanoemulsions, etc.) with imaging reagents (MRI, optical, PET, CT). This combination allows for non-invasive in vivo monitoring of therapeutic nanoparticles in diseased organs and tissues. Here, we report a novel perfluoropolyether (PFPE) nanoemulsion with a water-insoluble lipophilic drug. The formulation enables non-invasive monitoring of nanoemulsion biodistribution using two imaging modalities, (19)F MRI and near-infrared (NIR) optical imaging. The nanoemulsion is composed of PFPE-tyramide as a (19)F MRI tracer, hydrocarbon oil, surfactants, and a NIR dye. Preparation utilizes a combination of self-assembly and high energy emulsification methods, resulting in droplets with average diameter 180 nm and low polydispersity index (PDI less than 0.2). A model nonsteroidal anti-inflammatory drug (NSAID), celecoxib, was incorporated into the formulation at 0.2 mg/mL. The reported nanoemulsion's properties, including small particle size, visibility under (19)F NMR and NIR fluorescence spectroscopy, and the ability to carry drugs make it an attractive potential theranostic agent for cancer imaging and treatment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa