Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 39(25): 8646-8657, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37314886

RESUMO

Amino acid-capped gold nanoparticles (AuNPs) are a promising tool for various applications, including therapeutics and diagnostics. Most often, amino acids are used to cap AuNPs synthesized with other reducing agents. However, only a few studies have been dedicated to using α-amino acids as reducing and capping agents in AuNPs synthesis. Hence, there are still several gaps in understanding their role in reducing gold salts. Here, we used 20 proteinogenic α-amino acids and one non-proteinogenic α-amino acid in analogy to sodium citrate as reducing and capping agents in synthesizing AuNPs using the Turkevich method. Only four of the twenty-one investigated amino acids have not yielded gold nanoparticles. The shape, size distribution, stability, and optical properties of synthesized nanoparticles were characterized by scanning electron microscopy, differential centrifugal sedimentation, the phase analysis light scattering technique, and UV-vis spectroscopy. The physicochemical characteristics of synthesized AuNPs varied with the amino acid used for the reduction. We proposed that in the initial stage of gold salts reduction most of the used α-amino acids behave similarly to citrate in the Turkevich method. However, their different physicochemical properties resulting from differences in their chemical structures significantly influence the outcomes of reactions.

2.
Soft Matter ; 19(18): 3398-3404, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37129105

RESUMO

In this paper, two types of polymer-stabilized periodic structures created by photopolymerization of a nematic liquid crystal confined in a cylindrical structure are presented. Both types of structures were induced by nematic-isotropic phase transition in liquid crystal doped with gold nanoparticles. The first type of structure was created by stabilizing periodic phase separation at the nematic-isotropic phase transition temperature. As a result, a periodic structure with two distinct molecular orientations of nematic liquid crystal was achieved. The period of this structure was equal to the period induced by nematic-isotropic phase separation. The second type of structure, also related to the phase transition, was created due to an induced periodic density change of gold nanoparticles in the sample volume. Through photopolymerization it was possible to preclude the dispersion of gold nanoparticles while preserving the periodicity. An increased concentration of gold nanoparticles caused periodic defects in molecular orientation of the liquid crystal. Both types of structures were stable at room temperature. Consequently, two types of 1D photonic structures stabilized by photopolymerization are presented.

3.
Int J Cosmet Sci ; 45(3): 315-328, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36565245

RESUMO

OBJECTIVE: Titanium dioxide (TiO2 ) pigments (pure) or with a hydrophobic coating of triethoxycaprylylsilane (TECSi) used in cosmetics. Using different methods, we studied properties of commercially available pure and coated pigment. We determined the elemental composition of pigments that differ in their behaviour in a cosmetic formulation. The significant differences in the coating composition were revealed. METHODS: UV-Vis absorption spectroscopy allowed us to investigate the pigment purity and determined the polymorph form in pigments. FTIR was employed to identify functional groups present in the samples with the modified surface. XRD, DLS, TEM and DCS were applied to characterize particle size and morphology. The experiment of ED-XRF method was used to determine the elemental composition of pigments that differ in their behaviour in a cosmetic formulation. RESULTS: UV-Vis spectroscopy was used to detect organic pollutants in particular batches, which were not detected in the cases of the tested samples. Solid UV-Vis spectroscopy and XRD revealed which crystalline form of TiO2 is present in pigments. TEM and DLS methods were used to characterize particle size and morphology as well as DCS method, which provide more accurate information about form (separated or clustered particles) of pigments' particles in suspensions. Based on FTIR spectra, the presence of a coating in the raw material was identified, and the tell-tale signal of the silane group. On the contrary, spectroscopy of washed-out product can identify the well or poorly modified pigment. Applying ED-XRF, it turned out that the content of silicon (and consequently of the TECSi) was lower than that declared by the manufacturer. CONCLUSION: Our data indicate how we can recognize poorly coated pigments in raw material. The results show that ED-XRF method is nondestructive, effective and fast, hence, can be successfully introduced into preproduction pigment control in cosmetic industry.


OBJECTIF: Les pigments de dioxyde de titane (TiO2 ) (pur) ou avec un revêtement hydrophobe de triéthoxycaprylylsilane (TECSi) sont utilisés dans les cosmétiques. En utilisant différentes méthodes, nous avons étudié les propriétés des pigments purs et enrobés disponibles dans le commerce. Nous avons déterminé la composition élémentaire des pigments qui diffèrent dans leur comportement dans une formulation cosmétique. Les différences significatives dans la composition de l'enrobage ont été révélées. METHODES: La spectroscopie d'absorption UV-Vis nous a permis d'étudier la pureté des pigments et de déterminer la forme polymorphe des pigments. L'IRTF a été utilisé pour identifier les groupes fonctionnels présents dans les échantillons à la surface modifiée. XRD, DLS, TEM et DCS ont été appliqués pour caractériser la taille et la morphologie des particules. L'expérience de la méthode ED-XRF a été utilisée pour déterminer la composition élémentaire des pigments qui diffèrent dans leur comportement dans une formulation cosmétique. RÉSULTATS: La spectroscopie UV-Vis a été utilisée pour détecter des polluants organiques dans des lots particuliers, qui n'ont pas été détectés dans les cas des échantillons testés. La spectroscopie UV-Vis et la XRD ont révélé quelle forme cristalline de TiO2 est présente dans les pigments. Les méthodes TEM et DLS ont été utilisées pour caractériser la taille et la morphologie des particules ainsi que la méthode DCS qui fournit des informations plus précises sur la forme (particules séparées ou agglomérées) des particules de pigments dans les suspensions. Sur la base des spectres FTIR, la présence d'un revêtement dans la matière première a été identifiée, ainsi que le signal révélateur du groupe silane. D'autre part, la spectroscopie du produit délavé permet d'identifier le pigment bien ou mal modifié. En appliquant l'ED-XRF, il s'est avéré que la teneur en silicium (et par conséquent du TECSi) était inférieure à celle déclarée par le fabricant. CONCLUSION: Nos données indiquent comment nous pouvons reconnaître les pigments mal enrobés dans la matière première. Les résultats montrent que la méthode ED-XRF est non-destructive, efficace et rapide, et qu'elle peut donc être introduite avec succès dans le contrôle des pigments en pré-production dans l'industrie cosmétique.


Assuntos
Cosméticos , Titânio , Titânio/química , Tamanho da Partícula , Análise Espectral
4.
J Org Chem ; 86(15): 9979-9993, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34242505

RESUMO

The reactivities of three isomeric, charged ortho-pyridynes, the 1,2-, 2,3-, and 3,4-didehydropyridinium cations, were examined in the gas phase using Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry. The structures of selected product ions were probed using collision-activated dissociation (CAD) experiments in a linear quadrupole ion trap (LQIT) mass spectrometer. Mechanisms based on quantum chemical calculations are proposed for the formation of all major products. The products of the reactions of the charged ortho-pyridynes in the gas phase were found to closely resemble those formed upon reactions of neutral ortho-arynes in solution, but the mechanisms of these reactions exhibit striking differences. Additionally, no radical reactions were observed for any of the charged ortho-pyridynes examined, in contrast to previous proposals that ortho-benzyne can occasionally react via radical mechanisms. Finally, the relative reactivities of those charged gaseous ortho-pyridynes that yielded similar product distributions were found to be affected mainly by the (calculated) vertical electron affinities of the dehydrocarbon sites, which suggests that the reactivity of these species is controlled by polar effects.


Assuntos
Isomerismo , Espectrometria de Massas
5.
Sensors (Basel) ; 21(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34833684

RESUMO

In this article, we present a versatile gas detector that can operate on an unmanned aerial vehicle (UAV) or unmanned ground vehicle (UGV). The device has six electrochemical modules, which can be selected to measure specific gases, according to the mission requirements. The gas intake is realized by a miniaturized vacuum pump, which provides immediate gas distribution to the sensors and improves a fast response. The measurement data are sent wirelessly to the operator's computer, which continuously stores results and presents them in real time. The 2 m tubing allows measurements to be taken in places that are not directly accessible to the UGV or the UAV. While UAVs significantly enhanced the versatility of sensing applications, point gas detection is challenging due to the downwash effect and gas dilution produced by the rotors. In our work, we demonstrated the method of downwash effect reduction at aerial point gas measurements by applying a long-distance probe, which was kept between the UAV and the examined object. Moreover, we developed a safety connection protecting the UAV and sensor in case of accidental jamming of the tubing inside the examined cavity. The methods presented provide an effective gas metering strategy using UAVs.

6.
Opt Express ; 27(10): 14260-14269, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31163877

RESUMO

In this paper, we present our recent research results on light propagation in photonic crystal fibers (PCFs) infiltrated with a 6CHBT nematic liquid crystal (LC) doped with 2-nm gold nanoparticles (NPs) with a concentration in the range of 0.01 - 0.5% wt. Electro-optical response times and thermal tuning of the investigated samples have been studied in detail. We have observed up to ~80% decrease of rise times for different concentrations of gold NPs in the LC. Moreover, a significant reduction of the Fréedericksz threshold voltage (up to 60%) has been observed for samples with higher concentrations of 2-nm gold NPs in 6CHBT.

7.
Phys Chem Chem Phys ; 20(33): 21567-21572, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30094447

RESUMO

Two previously unreported isomeric biradicals with a 1,4-radical topology, the 1,5-didehydroisoquinolinium cation and the 4,8-didehydroisoquinolinium cation, and an additional, previously reported isomer, the 4,5-didehydroisoquinolinium cation, were studied to examine the importance of the exact location of the radical sites on their reactivities in the gas phase. The experimental results suggest that hydrogen bonding in the transition state enhances the reactivity of the 1,5-didehydroisoquinolinium cation towards tetrahydrofuran but not towards allyl iodide, dimethyl disulfide or tert-butyl isocyanide. The observation of no such enhancement of reactivity towards tetrahydrofuran for the 4,8-didehydroisoquinolinium and 4,5-didehydroisoquinolinium cations supports this hypothesis as these two biradicals are not able to engage in hydrogen bonding in their transition states for hydrogen atom abstraction from tetrahydrofuran. Quantum chemical transition state calculations indicate that abstraction of a hydrogen atom from tetrahydrofuran by the 1,5-didehydroisoquinolinium cation occurs at the C-1 radical site and that the transition state is stabilized by hydrogen bonding.

8.
European J Org Chem ; 2018(46): 6582-6589, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31692928

RESUMO

2,4,6-Tridehydropyridinium cation (7) undergoes three consecutive atom or atom group abstractions from reagent molecules in the gas phase. By placing a π-electron-donating hydroxyl group between two radical sites, their reactivity can be quenched by enhancing their through-space coupling via a favorable resonance structure. Indeed, 3-hydroxy-2,4,6-tridehydropyridinium cation (8) abstracts only one atom or group of atoms from reagents. On the other hand, an electron-withdrawing cyano group between two of the radical sites (9) destabilizes the analogous resonance structure and diminishes through-space coupling between the radical sites, resulting in abstraction of three atoms, just like 7. However, the cyano-substituent also increases acidity to the point that 9 reacts pre-dominantly via proton transfer instead of undergoing radical reactions. Therefore, acidic triradicals may undergo nonradical, barrierless proton transfer reactions faster than radical reactions, which are usually accompanied by barriers. Examination of the analogous cyano-substituted mono-and biradicals revealed behavior similar to that of the corresponding unsubstituted species, with the exception of substantially greater reactivities due to their greater (calculated) vertical electron affinities. Finally, the 3-cyano-2,6-didehydropyridinium cation with a singlet ground state (S-T splitting: -11.9 kcal mol-1) was found to react exclusively from the lowest-energy triplet state by fast proton transfer reactions.

9.
J Microsc ; 265(2): 251-260, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27766644

RESUMO

We report on a very compact desk-top transmission extreme ultraviolet (EUV) microscope based on a laser-plasma source with a double stream gas-puff target, capable of acquiring magnified images of objects with a spatial (half-pitch) resolution of sub-50 nm. A multilayer ellipsoidal condenser is used to focus and spectrally narrow the radiation from the plasma, producing a quasi-monochromatic EUV radiation (λ = 13.8 nm) illuminating the object, whereas a Fresnel zone plate objective forms the image. Design details, development, characterization and optimization of the EUV source and the microscope are described and discussed. Test object and other samples were imaged to demonstrate superior resolution compared to visible light microscopy.

10.
Chemistry ; 22(2): 809-15, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26592502

RESUMO

The chemical properties of the 4,5,8-tridehydroisoquinolinium ion (doublet ground state) and related mono- and biradicals were examined in the gas phase in a dual-cell Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer. The triradical abstracted three hydrogen atoms in a consecutive manner from tetrahydrofuran (THF) and cyclohexane molecules; this demonstrates the presence of three reactive radical sites in this molecule. The high (calculated) electron affinity (EA=6.06 eV) at the radical sites makes the triradical more reactive than two related monoradicals, the 5- and 8-dehydroisoquinolinium ions (EA=4.87 and 5.06 eV, respectively), the reactivity of which is controlled predominantly by polar effects. Calculated triradical stabilization energies predict that the most reactive radical site in the triradical is not position C4, as expected based on the high EA of this radical site, but instead position C5. The latter radical site actually destabilizes the 4,8-biradical moiety, which is singlet coupled. Indeed, experimental reactivity studies show that the radical site at C5 reacts first. This explains why the triradical is not more reactive than the 4-dehydroisoquinolinium ion because the C5 site is the intrinsically least reactive of the three radical sites due to its low EA. Although both EA and spin-spin coupling play major roles in controlling the overall reactivity of the triradical, spin-spin coupling determines the relative reactivity of the three radical sites.

11.
Langmuir ; 30(47): 14276-85, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25380545

RESUMO

Direct, acid (HCl) initiated sol-gel polycondensation of resorcinol with pyrrole-2-carboxaldehyde or its derivative N-methyl-2-pyrrolecarboxaldehyde yields thermosetting phenolic organic gels with N-content of up to 8.4 wt %. After carbonization, sturdy monoliths of N-doped carbon xerogels with N-content of up to 8 wt % are produced. The morphology and porosity of the doped carbons can be tuned by the solvent composition and the amount of polymerization catalyst used. An increase in carbonization temperature from 600 to 1000 °C strongly affects the carbon gels' microporosity, resulting in a decrease in N2 adsorption capacity, but a significant increase in H2 adsorption capacity (at -196 °C). The growing H2 sorption capacity with the decreasing specific surface area (measured by N2) is related to the gradual shrinkage of the carbon xerogel matrix and narrowing of the small micropores. In addition, it is demonstrated that pyridine-based heterocyclic aldehydes, that is, 2- or 4-pyridinecarboxaldehyde, condensate with resorcinol in basic conditions (KOH, NH4OH). However, in this case, monoliths cannot be produced and powders/rigid solid precipitates are obtained instead. If NH4OH is used as a sol-gel polycondensation catalyst, N-doped foams are obtained as a final carbonaceous product.

16.
Chemistry ; 19(27): 9022-33, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23703949

RESUMO

Experimental and computational studies on the formation of three gaseous, positively-charged para-benzyne analogues in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer are reported. The structures of the cations were examined by isolating them and allowing them to react with various neutral reagents whose reactions with aromatic carbon-centered σ-type mono- and biradicals are well understood. Cleavage of two iodine-carbon bonds in N-deuterated 1,4-diiodoisoquinolinium cation by collision-activated dissociation (CAD) produced a long-lived cation that showed nonradical reactivity, which was unexpected for a para-benzyne. However, the reactivity closely resembles that of an isomeric enediyne, N-deuterated 2-ethynylbenzonitrilium cation. A theoretical study on possible rearrangement reactions occurring during CAD revealed that the cation formed upon the first iodine atom loss undergoes ring-opening before the second iodine atom loss to form an enediyne instead of a para-benzyne. Similar results were obtained for the 5,8-didehydroisoquinolinium cation and the 2,5-didehydropyridinium cation. The findings for the 5,8-didehydroisoquinolinium cation are in contradiction with an earlier report on this cation. The cation described in the literature was regenerated by using the literature method and demonstrated to be the isomeric 5,7-didehydro-isoquinolinium cation and not the expected 5,8-isomer.


Assuntos
Antibióticos Antineoplásicos/química , Derivados de Benzeno/química , Isoquinolinas/química , Nitrilas/química , Piridinas/química , Cátions , Análise de Fourier , Gases , Indicadores e Reagentes , Isomerismo , Espectrometria de Massas/métodos , Teoria Quântica , Termodinâmica
17.
Beilstein J Nanotechnol ; 14: 190-204, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761679

RESUMO

The research undertaken aimed to develop an efficient Pt-based catalyst for polymer electrolyte membrane fuel cells (PEMFCs) by using a cost-effective and efficient physical method to deposit platinum nanoparticles (PtNPs) on carbon supports directly from the platinum target. The method developed avoids the chemical functionalization of the carbon substrate and the chemical synthesis of PtNPs during catalyst fabrication. Platinum was deposited on carbon particles at room temperature using a pulsed laser deposition (PLD) system equipped with an ArF excimer laser (λ = 193 nm). The uniform deposition of PtNPs on carbon supports was achieved thanks to a specially designed electromechanical system that mixed the carbon support particles during platinum deposition. In the studies, Vulcan XC-72R carbon black powder, a popular material used as support in the anodes and cathodes of PEMFCs, and a porous carbon material with a high degree of graphitization were used as carbon supports. The best electrochemical measurement results were obtained for Pt deposited on Vulcan XC-72R. The peak power density measured for this material in a membrane electrode assembly (MEA) of a PEMFC (fed with H2/Air) was 0.41 W/cm2, which is a good result compared to 0.57 W/cm2 obtained for commercial 20% Pt Vulcan XC-72R. This result was achieved with three times less Pt catalyst on the carbon support compared to the commercial catalyst, which means that a higher catalyst utilization factor was achieved.

18.
Beilstein J Nanotechnol ; 14: 552-564, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37179592

RESUMO

The results of comparative studies on the fabrication and characterization of GaN/Ag substrates using pulsed laser deposition (PLD) and magnetron sputtering (MS) and their evaluation as potential substrates for surface-enhanced Raman spectroscopy (SERS) are reported. Ag layers of comparable thicknesses were deposited using PLD and MS on nanostructured GaN platforms. All fabricated SERS substrates were examined regarding their optical properties using UV-vis spectroscopy and regarding their morphology using scanning electron microscopy. SERS properties of the fabricated GaN/Ag substrates were evaluated by measuring SERS spectra of 4-mercaptobenzoic acid molecules adsorbed on them. For all PLD-made GaN/Ag substrates, the estimated enhancement factors were higher than for MS-made substrates with a comparable thickness of the Ag layer. In the best case, the PLD-made GaN/Ag substrate exhibited an approximately 4.4 times higher enhancement factor than the best MS-made substrate.

19.
J Am Chem Soc ; 134(4): 1926-9, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22211475

RESUMO

The 2,4,6-tridehydropyridine radical cation, an analogue of the elusive 1,2,3,5-tetradehydrobenzene, was generated in the gas phase and its reactivity examined. Surprisingly, the tetraradical was found not to undergo radical reactions. This behavior is rationalized by resonance structures hindering fast radical reactions. This makes the cation highly electrophilic, and it rapidly reacts with many nucleophiles by quenching the N-C ortho-benzyne moiety, thereby generating a relatively unreactive meta-benzyne analogue.


Assuntos
Piridinas/química , Compostos de Piridínio/química , Cátions/síntese química , Cátions/química , Radicais Livres/síntese química , Radicais Livres/química , Estrutura Molecular , Piridinas/síntese química , Compostos de Piridínio/síntese química
20.
Chemistry ; 18(3): 969-74, 2012 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-22180095

RESUMO

The reactivity of 3-hydroxy-2,4,6-tridehydropyridinium cation was found to be drastically different from the reactivity of 2,4,6-tridehydropyridinium cation. While the latter triradical reacts with tetrahydrofuran, dimethyl disulfide and ally iodide via three consecutive atom or group abstractions, the former triradical exhibits this behavior only with tetrahydrofuran. Only a single atom or group abstraction was observed for the 3-hydroxy-2,4,6-tridehydropyridinium cation upon interaction with dimethyl disulfide and allyl iodide. This change in reactivity is caused by the hydroxyl group that strengthens the interactions between the two radical sites adjacent to it, thus reducing their reactivity. This explanation is supported by the observation of similar behavior for related biradicals.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa