RESUMO
Atherosclerosis is the foundation of potentially fatal cardiovascular diseases and it is characterized by plaque formation in large arteries. Current treatments aimed at reducing atherosclerotic risk factors still allow room for a large residual risk; therefore, novel therapeutic candidates targeting inflammation are needed. The endothelium is the starting point of vascular inflammation underlying atherosclerosis and we could previously demonstrate that the chemokine axis CXCL12-CXCR4 plays an important role in disease development. However, the role of ACKR3, the alternative and higher affinity receptor for CXCL12 remained to be elucidated. We studied the role of arterial ACKR3 in atherosclerosis using western diet-fed Apoe-/- mice lacking Ackr3 in arterial endothelial as well as smooth muscle cells. We show for the first time that arterial endothelial deficiency of ACKR3 attenuates atherosclerosis as a result of diminished arterial adhesion as well as invasion of immune cells. ACKR3 silencing in inflamed human coronary artery endothelial cells decreased adhesion molecule expression, establishing an initial human validation of ACKR3's role in endothelial adhesion. Concomitantly, ACKR3 silencing downregulated key mediators in the MAPK pathway, such as ERK1/2, as well as the phosphorylation of the NF-kB p65 subunit. Endothelial cells in atherosclerotic lesions also revealed decreased phospho-NF-kB p65 expression in ACKR3-deficient mice. Lack of smooth muscle cell-specific as well as hematopoietic ACKR3 did not impact atherosclerosis in mice. Collectively, our findings indicate that arterial endothelial ACKR3 fuels atherosclerosis by mediating endothelium-immune cell adhesion, most likely through inflammatory MAPK and NF-kB pathways.
Assuntos
Aterosclerose , Placa Aterosclerótica , Receptores CXCR , Animais , Aterosclerose/metabolismo , Adesão Celular , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Inflamação/metabolismo , Camundongos , Camundongos Knockout para ApoE , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Receptores CXCR/metabolismo , Fator de Transcrição RelA/metabolismoRESUMO
Objective- Expression of the chemokine-like receptor ChemR23 (chemerin receptor 23) has been specifically attributed to plasmacytoid dendritic cells (pDCs) and macrophages and ChemR23 has been suggested to mediate an inflammatory immune response in these cells. Because chemokine receptors are important in perpetuating chronic inflammation, we aimed to establish the role of ChemR23-deficiency on macrophages and pDCs in atherosclerosis. Approach and Results- ChemR23-knockout/knockin mice expressing eGFP (enhanced green fluorescent protein) were generated and after crossing with apolipoprotein E-deficient ( Apoe-/- ChemR23 e/e) animals were fed a western-type diet for 4 and 12 weeks. Apoe-/- ChemR23 e/e mice displayed reduced lesion formation and reduced leukocyte adhesion to the vessel wall after 4 weeks, as well as diminished plaque growth, a decreased number of lesional macrophages with an increased proportion of M2 cells and a less inflammatory lesion composition after 12 weeks of western-type diet feeding. Hematopoietic ChemR23-deficiency similarly reduced atherosclerosis. Additional experiments revealed that ChemR23-deficiency induces an alternatively activated macrophage phenotype, an increased cholesterol efflux and a systemic reduction in pDC frequencies. Consequently, expression of the pDC marker SiglecH in atherosclerotic plaques of Apoe-/- ChemR23 e/e mice was declined. ChemR23-knockout pDCs also exhibited a reduced migratory capacity and decreased CCR (CC-type chemokine receptor)7 expression. Finally, adoptive transfer of sorted wild-type and knockout pDCs into Apoe-/- recipient mice revealed reduced accumulation of ChemR23-deficient pDCs in atherosclerotic lesions. Conclusions- Hematopoietic ChemR23-deficiency increases the proportion of alternatively activated M2 macrophages in atherosclerotic lesions and attenuates pDC homing to lymphatic organs and recruitment to atherosclerotic lesions, which synergistically restricts atherosclerotic plaque formation and progression.
Assuntos
Aterosclerose/metabolismo , Quimiocinas/fisiologia , Células Dendríticas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Macrófagos/metabolismo , Animais , Aterosclerose/etiologia , Aterosclerose/prevenção & controle , Adesão Celular , Quimiocinas/deficiência , Quimiocinas/genética , Colesterol/metabolismo , Dieta Ocidental/efeitos adversos , Progressão da Doença , Feminino , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Genes Reporter , Inflamação , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Fenótipo , Receptores CCR7/metabolismoRESUMO
BACKGROUND: The CXCL12/CXCR4 chemokine ligand/receptor axis controls (progenitor) cell homeostasis and trafficking. So far, an atheroprotective role of CXCL12/CXCR4 has only been implied through pharmacological intervention, in particular, because the somatic deletion of the CXCR4 gene in mice is embryonically lethal. Moreover, cell-specific effects of CXCR4 in the arterial wall and underlying mechanisms remain elusive, prompting us to investigate the relevance of CXCR4 in vascular cell types for atheroprotection. METHODS: We examined the role of vascular CXCR4 in atherosclerosis and plaque composition by inducing an endothelial cell (BmxCreERT2-driven)-specific or smooth muscle cell (SMC, SmmhcCreERT2- or TaglnCre-driven)-specific deficiency of CXCR4 in an apolipoprotein E-deficient mouse model. To identify underlying mechanisms for effects of CXCR4, we studied endothelial permeability, intravital leukocyte adhesion, involvement of the Akt/WNT/ß-catenin signaling pathway and relevant phosphatases in VE-cadherin expression and function, vascular tone in aortic rings, cholesterol efflux from macrophages, and expression of SMC phenotypic markers. Finally, we analyzed associations of common genetic variants at the CXCR4 locus with the risk for coronary heart disease, along with CXCR4 transcript expression in human atherosclerotic plaques. RESULTS: The cell-specific deletion of CXCR4 in arterial endothelial cells (n=12-15) or SMCs (n=13-24) markedly increased atherosclerotic lesion formation in hyperlipidemic mice. Endothelial barrier function was promoted by CXCL12/CXCR4, which triggered Akt/WNT/ß-catenin signaling to drive VE-cadherin expression and stabilized junctional VE-cadherin complexes through associated phosphatases. Conversely, endothelial CXCR4 deficiency caused arterial leakage and inflammatory leukocyte recruitment during atherogenesis. In arterial SMCs, CXCR4 sustained normal vascular reactivity and contractile responses, whereas CXCR4 deficiency favored a synthetic phenotype, the occurrence of macrophage-like SMCs in the lesions, and impaired cholesterol efflux. Regression analyses in humans (n=259 796) identified the C-allele at rs2322864 within the CXCR4 locus to be associated with increased risk for coronary heart disease. In line, C/C risk genotype carriers showed reduced CXCR4 expression in carotid artery plaques (n=188), which was furthermore associated with symptomatic disease. CONCLUSIONS: Our data clearly establish that vascular CXCR4 limits atherosclerosis by maintaining arterial integrity, preserving endothelial barrier function, and a normal contractile SMC phenotype. Enhancing these beneficial functions of arterial CXCR4 by selective modulators might open novel therapeutic options in atherosclerosis.
Assuntos
Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Células Endoteliais/metabolismo , Receptores CXCR4/biossíntese , Animais , Aterosclerose/genética , Permeabilidade Capilar/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CXCR4/genéticaRESUMO
RATIONALE: Atheroprogression is a consequence of nonresolved inflammation, and currently a comprehensive overview of the mechanisms preventing resolution is missing. However, in acute inflammation, resolution is known to be orchestrated by a switch from inflammatory to resolving lipid mediators. Therefore, we hypothesized that lesional lipid mediator imbalance favors atheroprogression. OBJECTIVE: To understand the lipid mediator balance during atheroprogression and to establish an interventional strategy based on the delivery of resolving lipid mediators. METHODS AND RESULTS: Aortic lipid mediator profiling of aortas from Apoe-/- mice fed a high-fat diet for 4 weeks, 8 weeks, or 4 months revealed an expansion of inflammatory lipid mediators, Leukotriene B4 and Prostaglandin E2, and a concomitant decrease of resolving lipid mediators, Resolvin D2 (RvD2) and Maresin 1 (MaR1), during advanced atherosclerosis. Functionally, aortic Leukotriene B4 and Prostaglandin E2 levels correlated with traits of plaque instability, whereas RvD2 and MaR1 levels correlated with the signs of plaque stability. In a therapeutic context, repetitive RvD2 and MaR1 delivery prevented atheroprogression as characterized by halted expansion of the necrotic core and accumulation of macrophages along with increased fibrous cap thickness and smooth muscle cell numbers. Mechanistically, RvD2 and MaR1 induced a shift in macrophage profile toward a reparative phenotype, which secondarily stimulated collagen synthesis in smooth muscle cells. CONCLUSIONS: We present evidence for the imbalance between inflammatory and resolving lipid mediators during atheroprogression. Delivery of RvD2 and MaR1 successfully prevented atheroprogression, suggesting that resolving lipid mediators potentially represent an innovative strategy to resolve arterial inflammation.
Assuntos
Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Ácidos Docosa-Hexaenoicos/metabolismo , Mediadores da Inflamação/metabolismo , Metabolismo dos Lipídeos/fisiologia , Animais , Aterosclerose/etiologia , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Progressão da Doença , Ácidos Docosa-Hexaenoicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
BACKGROUND: Electronic health (eHealth) solutions are considered to relieve current and future pressure on the sustainability of primary health care systems. However, evidence of the effectiveness of eHealth in daily practice is missing. Furthermore, eHealth solutions are often not implemented structurally after a pilot phase, even if successful during this phase. Although many studies on barriers and facilitators were published in recent years, eHealth implementation still progresses only slowly. To further unravel the slow implementation process in primary health care and accelerate the implementation of eHealth, a 3-year Living Lab project was set up. In the Living Lab, called eLabEL, patients, health care professionals, small- and medium-sized enterprises (SMEs), and research institutes collaborated to select and integrate fully mature eHealth technologies for implementation in primary health care. Seven primary health care centers, 10 SMEs, and 4 research institutes participated. OBJECTIVE: This viewpoint paper aims to show the process of adoption of eHealth in primary care from the perspective of different stakeholders in a qualitative way. We provide a real-world view on how such a process occurs, including successes and failures related to the different perspectives. METHODS: Reflective and process-based notes from all meetings of the project partners, interview data, and data of focus groups were analyzed systematically using four theoretical models to study the adoption of eHealth in primary care. RESULTS: The results showed that large-scale implementation of eHealth depends on the efforts of and interaction and collaboration among 4 groups of stakeholders: patients, health care professionals, SMEs, and those responsible for health care policy (health care insurers and policy makers). These stakeholders are all acting within their own contexts and with their own values and expectations. We experienced that patients reported expected benefits regarding the use of eHealth for self-management purposes, and health care professionals stressed the potential benefits of eHealth and were interested in using eHealth to distinguish themselves from other care organizations. In addition, eHealth entrepreneurs valued the collaboration among SMEs as they were not big enough to enter the health care market on their own and valued the collaboration with research institutes. Furthermore, health care insurers and policy makers shared the ambition and need for the development and implementation of an integrated eHealth infrastructure. CONCLUSIONS: For optimal and sustainable use of eHealth, patients should be actively involved, primary health care professionals need to be reinforced in their management, entrepreneurs should work closely with health care professionals and patients, and the government needs to focus on new health care models stimulating innovations. Only when all these parties act together, starting in local communities with a small range of eHealth tools, the potential of eHealth will be enforced.
Assuntos
Atenção à Saúde/tendências , Laboratórios/normas , Atenção Primária à Saúde/métodos , Telemedicina/métodos , HumanosAssuntos
Quimiocina CXCL12/metabolismo , Doença da Artéria Coronariana/metabolismo , Células Endoteliais/metabolismo , Placa Aterosclerótica , Animais , Quimiocina CXCL12/deficiência , Quimiocina CXCL12/genética , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/patologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Camundongos Knockout para ApoE , Fenótipo , Polimorfismo de Nucleotídeo Único , Fatores de RiscoRESUMO
This paper explores a novel approach to communicating plausible space-based temporal variability of travel durations. Digital maps most often only convey single numerical values as the estimated duration for a path and this piece of information does not account for the multiple scenarios hidden behind this point estimate, nor for the temporal uncertainty along the route (e.g., the likelihood of being slowed down at an intersection). We explore conveying this uncertainty by animating hypothetical trips onto maps in the form of moving dots along one or more paths. We conducted a study with 16 participants and observed that they were able to correctly extract and infer simple information from our uncertainty visualizations but that identifying moving dots' changes in speed is a more complex task. We discuss design challenges and implications for future visualizations of space-based temporal uncertainty.
RESUMO
CCL17 is produced by conventional dendritic cells (cDCs), signals through CCR4 on regulatory T cells (Tregs), and drives atherosclerosis by suppressing Treg functions through yet undefined mechanisms. Here we show that cDCs from CCL17-deficient mice display a pro-tolerogenic phenotype and transcriptome that is not phenocopied in mice lacking its cognate receptor CCR4. In the plasma of CCL17-deficient mice, CCL3 was the only decreased cytokine/chemokine. We found that CCL17 signaled through CCR8 as an alternate high-affinity receptor, which induced CCL3 expression and suppressed Treg functions in the absence of CCR4. Genetic ablation of CCL3 and CCR8 in CD4+ T cells reduced CCL3 secretion, boosted FoxP3+ Treg numbers, and limited atherosclerosis. Conversely, CCL3 administration exacerbated atherosclerosis and restrained Treg differentiation. In symptomatic versus asymptomatic human carotid atheroma, CCL3 expression was increased, while FoxP3 expression was reduced. Together, we identified a non-canonical chemokine pathway whereby CCL17 interacts with CCR8 to yield a CCL3-dependent suppression of atheroprotective Tregs.
RESUMO
The changing climate and increasingly unpredictable sea ice conditions have created life-threatening risks for Inuit, the residents of the Arctic, who depend on the ice for transportation and livelihood. In response, they are turning to technology (e.g., RADAR imagery from the Canadian RADARSAT satellite) to augment their traditional knowledge of the ice and to map potential hazards. The difficulty lies in the actual RADAR interpretation process. In order to support understanding of the RADAR image content, we introduce a work-in-progress (WIP), INTUIT, a physicalization that represents the RADAR reflection strength, which is highly influenced by surface roughness, as a tactile texture. Such tactile texture is made by resampling the RADAR imagery to a number of UV cells and mapping the average brightness value of each cell to a physical variable. A proof of concept was designed for a region in Baffin Island (Nunavut) and sent to the Arctic for initial feedback. Preliminary study results are promising: it is expected that INTUIT will facilitate the interpretation learning process for RADAR imagery.
RESUMO
Introduction: The transmembrane protease A Disintegrin And Metalloproteinase 10 (ADAM10) displays a "pattern regulatory function," by cleaving a range of membrane-bound proteins. In endothelium, it regulates barrier function, leukocyte recruitment and angiogenesis. Previously, we showed that ADAM10 is expressed in human atherosclerotic plaques and associated with neovascularization. In this study, we aimed to determine the causal relevance of endothelial ADAM10 in murine atherosclerosis development in vivo. Methods and results: Endothelial Adam10 deficiency (Adam10 ecko ) in Western-type diet (WTD) fed mice rendered atherogenic by adeno-associated virus-mediated PCSK9 overexpression showed markedly increased atherosclerotic lesion formation. Additionally, Adam10 deficiency was associated with an increased necrotic core and concomitant reduction in plaque macrophage content. Strikingly, while intraplaque hemorrhage and neovascularization are rarely observed in aortic roots of atherosclerotic mice after 12 weeks of WTD feeding, a majority of plaques in both brachiocephalic artery and aortic root of Adam10ecko mice contained these features, suggestive of major plaque destabilization. In vitro, ADAM10 knockdown in human coronary artery endothelial cells (HCAECs) blunted the shedding of lectin-like oxidized LDL (oxLDL) receptor-1 (LOX-1) and increased endothelial inflammatory responses to oxLDL as witnessed by upregulated ICAM-1, VCAM-1, CCL5, and CXCL1 expression (which was diminished when LOX-1 was silenced) as well as activation of pro-inflammatory signaling pathways. LOX-1 shedding appeared also reduced in vivo, as soluble LOX-1 levels in plasma of Adam10ecko mice was significantly reduced compared to wildtypes. Discussion: Collectively, these results demonstrate that endothelial ADAM10 is atheroprotective, most likely by limiting oxLDL-induced inflammation besides its known role in pathological neovascularization. Our findings create novel opportunities to develop therapeutics targeting atherosclerotic plaque progression and stability, but at the same time warrant caution when considering to use ADAM10 inhibitors for therapy in other diseases.
RESUMO
The CXC chemokine receptor 4 (CXCR4) in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) is crucial for vascular integrity. The atheroprotective functions of CXCR4 in vascular cells may be counteracted by atherogenic functions in other nonvascular cell types. Thus, strategies for cell-specifically augmenting CXCR4 function in vascular cells are crucial if this receptor is to be useful as a therapeutic target in treating atherosclerosis and other vascular disorders. Here, we identified miR-206-3p as a vascular-specific CXCR4 repressor and exploited a target-site blocker (CXCR4-TSB) that disrupted the interaction of miR-206-3p with CXCR4 in vitro and in vivo. In vitro, CXCR4-TSB enhanced CXCR4 expression in human and murine ECs and VSMCs to modulate cell viability, proliferation, and migration. Systemic administration of CXCR4-TSB in Apoe-deficient mice enhanced Cxcr4 expression in ECs and VSMCs in the walls of blood vessels, reduced vascular permeability and monocyte adhesion to endothelium, and attenuated the development of diet-induced atherosclerosis. CXCR4-TSB also increased CXCR4 expression in B cells, corroborating its atheroprotective role in this cell type. Analyses of human atherosclerotic plaque specimens revealed a decrease in CXCR4 and an increase in miR-206-3p expression in advanced compared with early lesions, supporting a role for the miR-206-3p-CXCR4 interaction in human disease. Disrupting the miR-206-3p-CXCR4 interaction in a cell-specific manner with target-site blockers is a potential therapeutic approach that could be used to treat atherosclerosis and other vascular diseases.
Assuntos
Aterosclerose , MicroRNAs , Placa Aterosclerótica , Humanos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais/metabolismo , Receptores CXCR4/metabolismo , Aterosclerose/genética , Placa Aterosclerótica/patologia , Proliferação de Células , Miócitos de Músculo Liso/metabolismo , Movimento CelularRESUMO
When showing data about people, visualization designers and data journalists often use design strategies that presumably help the audience relate to those people. The term anthropographics has been recently coined to refer to this practice and the resulting visualizations. Anthropographics is a rich and growing area, but the work so far has remained scattered. Despite preliminary empirical work and a few web essays written by practitioners, there is a lack of clear language for thinking about and communicating about anthropographics. We address this gap by introducing a conceptual framework and a design space for anthropographics. Our design space consists of seven elementary design dimensions that can be reasonably hypothesized to have some effect on prosocial feelings or behavior. It extends a previous design space and is informed by an analysis of 105 visualizations collected from newspapers, websites, and research articles. We use our conceptual framework and design space to discuss trade-offs, common design strategies, as well as future opportunities for design and research in the area of anthropographics.
Assuntos
Gráficos por Computador , Emoções , HumanosRESUMO
We explore how the lens of fictional superpowers can help characterize how visualizations empower people and provide inspiration for new visualization systems. Researchers and practitioners often tout visualizations' ability to "make the invisible visible" and to "enhance cognitive abilities." Meanwhile superhero comics and other modern fiction often depict characters with similarly fantastic abilities that allow them to see and interpret the world in ways that transcend traditional human perception. We investigate the intersection of these domains, and show how the language of superpowers can be used to characterize existing visualization systems and suggest opportunities for new and empowering ones. We introduce two frameworks: The first characterizes seven underlying mechanisms that form the basis for a variety of visual superpowers portrayed in fiction. The second identifies seven ways in which visualization tools and interfaces can instill a sense of empowerment in the people who use them. Building on these observations, we illustrate a diverse set of "visualization superpowers" and highlight opportunities for the visualization community to create new systems and interactions that empower new experiences with data Material and illustrations are available under CC-BY 4.0 at osf.io/8yhfz.
Assuntos
Gráficos por Computador , Imersão , Cognição , Humanos , PercepçãoRESUMO
While classical cannabinoid receptors are known to crucially impact on myocardial infarction (MI) repair, a function of the cannabinoid-sensitive receptor GPR55 herein is poorly understood. We investigated the role of GPR55 in cardiac physiology and post-MI inflammation and remodelling. Global GPR55-/- and wildtype (WT) mice were basally characterized or assigned to 1, 3 or 28 days permanent MI and subsequently analysed via pro-inflammatory and pro-hypertrophic parameters. GPR55-/- deficiency was basally associated with bradycardia, increased diastolic LV volume and sarcomere length and a subtle inflammatory phenotype. While infarct size and myeloid cell infiltration were unaffected by GPR55 depletion, acute cardiac chemokine production was prolonged post-MI. Concurrently, GPR55-/- hearts exhibited a premature expansion of pro-reparative and phagocytic macrophages paralleled by early up-regulation of extracellular matrix (ECM) factors 3 days post-MI, which could be mimicked by sole haematopoietic GPR55 depletion. Moreover, global GPR55 deficiency mitigated MI-induced foetal gene re-programming and cardiomyocyte hypertrophy, culminating in aggravated LV dilatation and infarct expansion. GPR55 regulates cardiac homeostasis and ischaemia responses by maintaining adequate LV filling and modulating three crucial processes post-MI: wound healing kinetics, cardiomyocyte hypertrophy and maladaptive remodelling.
Assuntos
Sistema Hematopoético , Infarto do Miocárdio , Animais , Biomimética , Diástole , Nível de Saúde , Transplante de Células-Tronco Hematopoéticas , Masculino , CamundongosRESUMO
BACKGROUND: MicroRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene expression in multicellular organisms by affecting both the stability and translation of mRNAs. One of the miRNAs that has been shown to play a role in various pathologies like cancer, neurological disorders and cardiovascular diseases is miRNA-26b. However, these studies only demonstrated rather ambiguous associations without revealing a causal relationship. Therefore, the aim of this study is to establish and validate a mouse model which enables the elucidation of the exact role of miRNA-26b in various pathologies. RESULTS: A miRNA-26b-deficient mouse model was established using homologous recombination and validated using PCR. miRNA-26b-deficient mice did not show any physiological abnormalities and no effects on systemic lipid levels, blood parameters or tissue leukocytes. Using next generation sequencing, the gene expression patterns in miRNA-26b-deficient mice were analyzed and compared to wild type controls. This supported the already suggested role of miRNA-26b in cancer and neurological processes, but also revealed novel associations of miRNA-26b with thermogenesis and allergic reactions. In addition, detailed analysis identified several genes that seem to be highly regulated by miRNA-26b, which are linked to the same pathological conditions, further confirming the role of miRNA-26b in these pathologies and providing a strong validation of our mouse model. CONCLUSIONS: miRNA-26b plays an important role in various pathologies, although causal relationships still have to be established. The described mouse model of miRNA-26b deficiency is a crucial first step towards the identification of the exact role of miRNA-26b in various diseases that could identify miRNA-26b as a promising novel diagnostic or even therapeutic target in a broad range of pathologies.
Assuntos
MicroRNAs , Neoplasias , Transcriptoma , Animais , Modelos Animais de Doenças , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , MicroRNAs/genética , RNA MensageiroRESUMO
Dysfunctional adipose tissue (AT) may contribute to the pathology of several metabolic diseases through altered lipid metabolism, insulin resistance, and inflammation. Atypical chemokine receptor 3 (ACKR3) expression was shown to increase in AT during obesity, and its ubiquitous elimination caused hyperlipidemia in mice. Although these findings point towards a role of ACKR3 in the regulation of lipid levels, the role of adipocyte-specific ACKR3 has not yet been studied exclusively in this context. In this study, we established adipocyte- and hepatocyte-specific knockouts of Ackr3 in ApoE-deficient mice in order to determine its impact on lipid levels under hyperlipidemic conditions. We show for the first time that adipocyte-specific deletion of Ackr3 results in reduced AT triglyceride and cholesterol content in ApoE-deficient mice, which coincides with increased peroxisome proliferator-activated receptor-γ (PPAR-γ) and increased Angptl4 expression. The role of adipocyte ACKR3 in lipid handling seems to be tissue-specific as hepatocyte ACKR3 deficiency did not demonstrate comparable effects. In summary, adipocyte-specific ACKR3 seems to regulate AT lipid levels in hyperlipidemic Apoe-/- mice, which may therefore be a significant determinant of AT health. Further studies are needed to explore the potential systemic or metabolic effects that adipocyte ACKR3 might have in associated disease models.
RESUMO
The calcium sensing receptor (CaSR) is a G-protein coupled receptor that especially plays an important role in the sensing of extracellular calcium to maintain its homeostasis. Several in-vitro studies demonstrated that CaSR plays a role in adipose tissue metabolism and inflammation, resulting in systemic inflammation and contributing to atherosclerosis development. The aim of this study was to investigate whether adipocyte CaSR plays a role in adipose tissue inflammation in-vivo and atherosclerosis development. By using a newly established conditional mature adipocyte specific CaSR deficient mouse on a hyperlipidemic and atherosclerosis prone Apoe-/- background it could be shown that CaSR deficiency in adipocytes does neither contribute to initiation nor to progression of atherosclerotic plaques as judged by the unchanged lesion size or composition. Additionally, CaSR deficiency did not influence gonadal visceral adipose tissue (vAT) inflammation in-vivo, although a small decrease in gonadal visceral adipose cholesterol content could be observed. In conclusion, adipocyte CaSR seems not to be involved in vAT inflammation in-vivo and does not influence atherosclerosis development in hyperlipidemic Apoe-/- mice.
Assuntos
Adipócitos/metabolismo , Hiperlipidemias/complicações , Gordura Intra-Abdominal/patologia , Placa Aterosclerótica/imunologia , Receptores de Detecção de Cálcio/deficiência , Animais , Modelos Animais de Doenças , Humanos , Hiperlipidemias/genética , Hiperlipidemias/imunologia , Inflamação/imunologia , Inflamação/patologia , Gordura Intra-Abdominal/citologia , Gordura Intra-Abdominal/imunologia , Gordura Intra-Abdominal/metabolismo , Camundongos , Camundongos Knockout para ApoE , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Receptores de Detecção de Cálcio/genéticaRESUMO
BACKGROUND: In recent years, a trend in the use of tailor-made approaches and pragmatic trial methodology for evaluating effectiveness has been visible in programs ranging from large-scale national health prevention campaigns to community-based initiatives. Qualitative research is used more often for tailoring interventions towards communities and/or local care practices. This article systematically reviews the contribution of qualitative research in developing tailor-made community-based interventions in primary care evaluated by means of the pragmatic trial methodology. METHODS: A systematic search of Pubmed/Medline and Embase revealed 33 articles. Using a literature mapping process, the articles were arranged according to the development phases identified in the MRC framework for the development of complex interventions to improve health. RESULTS: The review showed qualitative research is mainly used to provide insight into the contextual circumstances of the interventions' implementation, delivery and evaluation. To a lesser extent, qualitative research findings are used for tailoring and improving the design of the interventions for a better fit with daily primary care practice. Moreover, most qualitative findings are used for tailoring the interventions' contextual circumstances so that the interventions are performed in practice as planned, rather than adjusted to local circumstances. CONCLUSIONS: Pragmatic trials seem to be oxymoronic. Although the pragmatic trial methodology establishes the effectiveness of interventions under natural, non-experimental conditions, no pragmatic fit is allowed. Qualitative research's contribution to the development of tailor-made community-based interventions lies in providing ongoing evaluations of the dilemmas faced in pragmatic trials and allowing for the development of true tailor-made interventions.