Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
2.
BMC Cancer ; 13: 603, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24350795

RESUMO

BACKGROUND: Nonpolypoid adenomas are a subgroup of colorectal adenomas that have been associated with a more aggressive clinical behaviour compared to their polypoid counterparts. A substantial proportion of nonpolypoid and polypoid adenomas lack APC mutations, APC methylation or chromosomal loss of the APC locus on chromosome 5q, suggesting the involvement of other Wnt-pathway genes. The present study investigated promoter methylation of several Wnt-pathway antagonists in both nonpolypoid and polypoid adenomas. METHODS: Quantitative methylation-specific PCR (qMSP) was used to evaluate methylation of four Wnt-antagonists, SFRP2, WIF-1, DKK3 and SOX17 in 18 normal colorectal mucosa samples, 9 colorectal cancer cell lines, 18 carcinomas, 44 nonpolypoid and 44 polypoid adenomas. Results were integrated with previously obtained data on APC mutation, methylation and chromosome 5q status from the same samples. RESULTS: Increased methylation of all genes was found in the majority of cell lines, adenomas and carcinomas compared to normal controls. WIF-1 and DKK3 showed a significantly lower level of methylation in nonpolypoid compared to polypoid adenomas (p < 0.01). Combining both adenoma types, a positive trend between APC mutation and both WIF-1 and DKK3 methylation was observed (p < 0.05). CONCLUSIONS: Methylation of Wnt-pathway antagonists represents an additional mechanism of constitutive Wnt-pathway activation in colorectal adenomas. Current results further substantiate the existence of partially alternative Wnt-pathway disruption mechanisms in nonpolypoid compared to polypoid adenomas, in line with previous observations.


Assuntos
Adenoma/genética , Neoplasias Colorretais/genética , Metilação de DNA , Regiões Promotoras Genéticas , Via de Sinalização Wnt/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteína da Polipose Adenomatosa do Colo/genética , Estudos de Casos e Controles , Linhagem Celular Tumoral , Quimiocinas , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/genética , Poliploidia , Proteínas Repressoras/genética , Fatores de Transcrição SOXF/genética
4.
Arthritis Rheumatol ; 72(8): 1330-1340, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32182401

RESUMO

OBJECTIVE: Patients with SjÓ§gren's syndrome (SS) have an increased risk of developing malignant B cell lymphomas, particularly mucosa-associated lymphoid tissue (MALT)-type lymphomas. We have previously shown that a predominant proportion of patients with SS-associated salivary gland MALT lymphoma express somatically hypermutated IgM with strong amino acid sequence homology with stereotypic rheumatoid factors (RFs). The present study was undertaken in a larger cohort of patients with SS-associated MALT lymphoma to more firmly assess the frequency of RF reactivity and the significance of somatic IGV-region mutations for RF reactivity. METHODS: B cell antigen receptors (BCRs) of 16 patients with SS-associated salivary gland MALT lymphoma were analyzed. Soluble recombinant IgM was produced of 12 MALT lymphoma samples, including 1 MALT lymphoma sample that expressed an IgM antibody fitting in a novel IGHV3-30-encoded stereotypic IGHV subset. For 4 of the 12 IgM antibodies from MALT lymphoma samples, the somatically mutated IGHV and IGKV gene sequences were reverted to germline configurations. Their RF activity and binding affinity were determined by enzyme-linked immunosorbent assay and surface plasmon resonance, respectively. RESULTS: Nine (75%) of the 12 IgM antibodies identified in patients with SS-associated salivary gland MALT lymphoma displayed strong monoreactive RF activity. Reversion of the IGHV and IGKV mutations to germline configuration resulted in RF affinities for IgG that were significantly lower for 3 of the 4 somatically mutated IgM antibodies. In stereotypic IGHV3-7/IGKV3-15-encoded RFs, a recurrent replacement mutation in the IGKV3-15-third complementarity-determining region was found to play a pivotal role in the affinity for IgG-Fc. CONCLUSION: A majority of patients with SS-associated salivary gland MALT lymphoma express somatically mutated BCRs that are selected for monoreactive, high-affinity binding of IgG-Fc. These data underscore the notion that soluble IgG, most likely in immune complexes in inflamed tissues, is the principal autoantigen in the pathogenesis of a variety of B cell lymphomas, particularly SS-associated MALT lymphomas.


Assuntos
Imunoglobulina G/imunologia , Linfoma de Zona Marginal Tipo Células B/genética , Mutação/imunologia , Fator Reumatoide/imunologia , Síndrome de Sjogren/genética , Humanos , Linfoma de Zona Marginal Tipo Células B/imunologia , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Glândulas Salivares/imunologia
5.
Cell Death Dis ; 9(9): 846, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154400

RESUMO

Glucocorticoids (GCs) are metabolic hormones with immunosuppressive effects that have proven effective drugs against childhood acute lymphoblastic leukemia (ALL). Yet, the role of metabolic reprogramming in GC-induced ALL cell death is poorly understood. GCs efficiently block glucose uptake and metabolism in ALL cells, but this does not fully explain the observed induction of autophagy and cell death. Here, we have performed parallel time-course proteomics, metabolomics, and isotope-tracing studies to examine in detail the metabolic effects of GCs on ALL cells. We observed metabolic events associated with growth arrest, autophagy, and catabolism prior to onset of apoptosis: nucleotide de novo synthesis was reduced, while certain nucleobases accumulated; polyamine synthesis was inhibited; and phosphatidylcholine synthesis was induced. GCs suppressed not only glycolysis but also entry of both glucose and glutamine into the TCA cycle. In contrast, expression of glutamine-ammonia ligase (GLUL) and cellular glutamine content was robustly increased by GC treatment, suggesting induction of glutamine synthesis, similar to nutrient-starved muscle. Modulating medium glutamine and dimethyl-α-ketoglutarate (dm-αkg) to favor glutamine synthesis reduced autophagosome content of ALL cells, and dm-αkg also rescued cell viability. These data suggest that glutamine synthesis affects autophagy and possibly onset of cell death in response to GCs, which should be further explored to understand mechanism of action and possible sources of resistance.


Assuntos
Glucocorticoides/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Glutamina/metabolismo , Glicólise/efeitos dos fármacos , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa