Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612759

RESUMO

As a regulator of alveolo-capillary barrier integrity, Transient Receptor Potential Vanilloid 4 (TRPV4) antagonism represents a promising strategy for reducing pulmonary edema secondary to chemical inhalation. In an experimental model of acute lung injury induced by exposure of anesthetized swine to chlorine gas by mechanical ventilation, the dose-dependent effects of TRPV4 inhibitor GSK2798745 were evaluated. Pulmonary function and oxygenation were measured hourly; airway responsiveness, wet-to-dry lung weight ratios, airway inflammation, and histopathology were assessed 24 h post-exposure. Exposure to 240 parts per million (ppm) chlorine gas for ≥50 min resulted in acute lung injury characterized by sustained changes in the ratio of partial pressure of oxygen in arterial blood to the fraction of inspiratory oxygen concentration (PaO2/FiO2), oxygenation index, peak inspiratory pressure, dynamic lung compliance, and respiratory system resistance over 24 h. Chlorine exposure also heightened airway response to methacholine and increased wet-to-dry lung weight ratios at 24 h. Following 55-min chlorine gas exposure, GSK2798745 marginally improved PaO2/FiO2, but did not impact lung function, airway responsiveness, wet-to-dry lung weight ratios, airway inflammation, or histopathology. In summary, in this swine model of chlorine gas-induced acute lung injury, GSK2798745 did not demonstrate a clinically relevant improvement of key disease endpoints.


Assuntos
Lesão Pulmonar Aguda , Antineoplásicos , Benzimidazóis , Compostos de Espiro , Animais , Suínos , Cloro/toxicidade , Canais de Cátion TRPV , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Inflamação , Oxigênio
2.
Cannabis Cannabinoid Res ; 8(2): 360-373, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36301522

RESUMO

Introduction: Cannabidiol (CBD) is primarily consumed through ingestion and inhalation. Little is known about how CBD pharmacokinetics differ between routes of administration, and duration of pulmonary exposure. Methods: Pharmacokinetics, brain distribution, and urinary elimination of CBD and its major metabolites (6-hydroxy-cannabidiol [6-OH-CBD], 7-hydroxy-cannabidiol [7-OH-CBD], 7-carboxy-cannabidiol [7-COOH-CBD], and CBD-glucuronide) were evaluated in adult Sprague-Dawley rats following a single oral CBD ingestion (10 mg/kg in medium chain triglyceride oil; 24 male animals), and 1 or 14 days of repeated inhalation (0.9-13.9 mg/kg in propylene glycol [41%/59% by weight]; 5 male and 5 female animals per dose). Blood and brain tissue were collected at a single time point from each animal. Collection times were staggered from 5 min to 24 h postoral gavage or first (blood only) and final inhalation. Urine was collected 24 h postoral gavage or final inhalation. Samples were analyzed through liquid chromatography-mass spectrometry (LC-MS/MS). Results: CBD was more rapidly absorbed following inhalation than ingestion (Tmax=5 min and 2 h, respectively). Inhalation resulted in a dose-responsive increase in CBD Cmax and AUClast. CBD Cmax was 24-fold higher following the highest pulmonary dose (13.9 mg/kg) versus an oral dose of comparable concentration (10 mg/kg). Cmax and AUClast (0-16 h) trended higher following repeated exposure. Elimination was notably faster with repeated CBD inhalation (t1/2=5.3 and 2.4 h on days 1 and 14, respectively). While metabolites were detectable in plasma, AUClast (0-2 h) was at least 10- (7-OH-CBD, 7-COOH-CBD) to 100- (6-OH-CBD) fold lower than the parent compound. Metabolite concentration trended higher following repeated inhalation (6.7 mg/kg CBD); AUClast (0-16 h) was ∼1.8-, ∼1.4-, and ∼2.4-fold higher following 14 days of exposure for 6-OH-CBD, 7-OH-CBD, and 7-COOH-CBD, respectively. CBD was detectable in brain homogenate tissue 24-h after 14-day inhalation (>3.5 mg/kg deposited dose) or a single oral administration. CBD metabolites were only measurable in brain tissue following the highest inhaled dose (13.9 mg/kg CBD). CBD, but not metabolites, was detectable in urine for all dose groups following 2 weeks of CBD inhalation. Neither CBD nor metabolites were present in urine after oral administration. Conclusion: CBD pharmacokinetics differ across oral and pulmonary routes of administration and acute or repeated dosing.


Assuntos
Canabidiol , Animais , Feminino , Masculino , Ratos , Administração Oral , Canabidiol/administração & dosagem , Canabidiol/farmacocinética , Cromatografia Líquida , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Administração por Inalação
3.
Cannabis Cannabinoid Res ; 8(S1): S51-S61, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37721988

RESUMO

Introduction: Minor cannabinoids are increasingly being consumed in oral formulations (i.e., edibles, tinctures) for medical and nonmedical purposes. This study examined the pharmacokinetics (PKs) of cannabinoids tetrahydrocannabivarin (THCV), cannabichromene (CBC), cannabinol (CBN), and delta-8-tetrahydrocannabinol (D8-THC) after the first and last oral dose during a 14-day administration period. Materials and Methods: Sprague-Dawley rats (N=6 animals/dose, 50% female) were given an assigned dose of one of four cannabinoids (THCV=3.2-100 mg/kg, CBC=3.2-100 mg/kg, CBN=1-100 mg/kg, or D8-THC=0.32-10 mg/kg) or vehicle (medium-chain triglyceride oil) through oral gavage once daily for 14 days. Blood was collected 45 min and 1.5, 3, and 24 h following the first dose (day 1) and the last dose (day 14) of repeated oral cannabinoid treatment for PK analysis. Outcomes of interest included time to maximum concentration (Tmax), maximum concentration (Cmax), and area under the concentration versus time curve (AUClast). Dose-normalized (DN) Cmax and DN AUClast were also calculated. Brain tissue was collected 24 h post-administration of the first (day 1) and the last (day 14) dose of each cannabinoid to determine concentrations in brain. Results: All cannabinoids tested were detectable in plasma after single and 14-day repeated dosing. DN Cmax and DN AUClast were highest for D8-THC, followed by CBC, CBN, and THCV. There was no sex difference observed in cannabinoid kinetics. Accumulation of D8-THC in plasma was observed after 14 days of administration. THCV levels in plasma were lower on day 14 compared to day 1, indicating potential adaptation of metabolic pathways and increased drug elimination. Cannabinoids were detected in brain tissue 24 h post-administration of the first and the last dose of 17-100 mg/kg THCV, 3.2-100 mg/kg CBC, 10-100 mg/kg CBN, and 10 mg/kg D8-THC. Conclusions: THCV, CBC, CBN, and D8-THC produced detectable levels in plasma and translocated to brain tissue after the first dose (day 1) and the last dose (day 14) of repeated oral dosing. Examination of PKs of these minor cannabinoids in blood and brain provides a critical step for informing target dose ranges and dosing schedules in future studies that evaluate the potential effects of these compounds.


Assuntos
Encéfalo , Plasma , Feminino , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Canabinol
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa