Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
BMC Neurol ; 16: 45, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-27067115

RESUMO

BACKGROUND: Mutant rodent models have highlighted the importance of the ventricular ependymal cells and the subcommissural organ (a brain gland secreting glycoproteins into the cerebrospinal fluid) in the development of fetal onset hydrocephalus. Evidence indicates that communicating and non-communicating hydrocephalus can be two sequential phases of a single pathological phenomenon triggered by ependymal disruption and/or abnormal function of the subcommissural organ. We have hypothesized that a similar phenomenon may occur in human cases with fetal onset hydrocephalus. CASE PRESENTATION: We report here on a case of human fetal communicating hydrocephalus with no central nervous system abnormalities other than stenosis of the aqueduct of Sylvius (SA) that became non-communicating hydrocephalus during the first postnatal week due to obliteration of the cerebral aqueduct. The case was followed closely by a team of basic and clinic investigators allowing an early diagnosis and prediction of the evolving pathophysiology. This information prompted neurosurgeons to perform a third ventriculostomy at postnatal day 14. The fetus was monitored by ultrasound, computerized axial tomography and magnetic resonance imaging (MRI). After birth, the follow up was by MRI, electroencephalography and neurological and neurocognitive assessments. Cerebrospinal fluid (CSF) collected at surgery showed abnormalities in the subcommissural organ proteins and the membrane proteins L1-neural cell adhesion molecule and aquaporin-4. The neurological and neurocognitive assessments at 3 and 6 years of age showed neurological impairments (epilepsy and cognitive deficits). CONCLUSIONS: (1) In a hydrocephalic fetus, a stenosed SA can become obliterated at perinatal stages. (2) In the case reported, a close follow up of a communicating hydrocephalus detected in utero allowed a prompt postnatal surgery aiming to avoid as much brain damage as possible. (3) The clinical and pathological evolution of this patient supports the possibility that the progressive stenosis of the SA initiated during the embryonic period may have resulted from ependymal disruption of the cerebral aqueduct and dysfunction of the subcommissural organ. The analysis of subcommissural organ glycoproteins present in the CSF may be a valuable diagnostic tool for the pathogenesis of congenital hydrocephalus.


Assuntos
Aqueduto do Mesencéfalo/patologia , Hidrocefalia/diagnóstico , Órgão Subcomissural/patologia , Constrição Patológica/patologia , Feminino , Feto , Glicoproteínas/metabolismo , Humanos , Imageamento por Ressonância Magnética , Gravidez
2.
Biol Res ; 45(3): 231-42, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23283433

RESUMO

Most cells of the developing mammalian brain derive from the ventricular (VZ) and the subventricular (SVZ) zones. The VZ is formed by the multipotent radial glia/neural stem cells (NSCs) while the SVZ harbors the rapidly proliferative neural precursor cells (NPCs). Evidence from human and animal models indicates that the common history of hydrocephalus and brain maldevelopment starts early in embryonic life with disruption of the VZ and SVZ. We propose that a "cell junction pathology" involving adherent and gap junctions is a final common outcome of a wide range of gene mutations resulting in proteins abnormally expressed by the VZ cells undergoing disruption. Disruption of the VZ during fetal development implies the loss of NSCs whereas VZ disruption during the perinatal period implies the loss of ependyma. The process of disruption occurs in specific regions of the ventricular system and at specific stages of brain development. This explains why only certain brain structures have an abnormal development, which in turn results in a specific neurological impairment of the newborn. Disruption of the VZ of the Sylvian aqueduct (SA) leads to aqueductal stenosis and hydrocephalus, while disruption of the VZ of telencephalon impairs neurogenesis. We are currently investigating whether grafting of NSCs/neurospheres from normal rats into the CSF of hydrocephalic mutants helps to diminish/repair the outcomes of VZ disruption.


Assuntos
Hidrocefalia/terapia , Junções Intercelulares/patologia , Células-Tronco Neurais/patologia , Transplante de Células-Tronco/métodos , Animais , Diferenciação Celular , Proliferação de Células , Aqueduto do Mesencéfalo/patologia , Ventrículos Cerebrais/embriologia , Ventrículos Cerebrais/patologia , Humanos , Hidrocefalia/patologia , Células-Tronco Neurais/transplante , Neurogênese , Ratos
3.
Biol. Res ; 45(3): 231-241, 2012. ilus
Artigo em Inglês | LILACS | ID: lil-659281

RESUMO

Most cells of the developing mammalian brain derive from the ventricular (VZ) and the subventricular (SVZ) zones. The VZ is formed by the multipotent radial glia/neural stem cells (NSCs) while the SVZ harbors the rapidly proliferative neural precursor cells (NPCs). Evidence from human and animal models indicates that the common history of hydrocephalus and brain maldevelopment starts early in embryonic life with disruption of the VZ and SVZ. We propose that a "cell junction pathology" involving adherent and gap junctions is a final common outcome of a wide range of gene mutations resulting in proteins abnormally expressed by the VZ cells undergoing disruption. Disruption of the VZ during fetal development implies the loss of NSCs whereas VZ disruption during the perinatal period implies the loss of ependyma. The process of disruption occurs in specific regions of the ventricular system and at specific stages of brain development. This explains why only certain brain structures have an abnormal development, which in turn results in a specific neurological impairment of the newborn. Disruption of the VZ of the Sylvian aqueduct (SA) leads to aqueductal stenosis and hydrocephalus, while disruption of the VZ of telencephalon impairs neurogenesis. We are currently investigating whether grafting of NSCs/neurospheres from normal rats into the CSF of hydrocephalic mutants helps to diminish/repair the outcomes of VZ disruption.


Assuntos
Animais , Humanos , Ratos , Hidrocefalia/terapia , Junções Intercelulares/patologia , Células-Tronco Neurais/patologia , Transplante de Células-Tronco/métodos , Diferenciação Celular , Proliferação de Células , Aqueduto do Mesencéfalo/patologia , Ventrículos Cerebrais/embriologia , Ventrículos Cerebrais/patologia , Hidrocefalia/patologia , Neurogênese , Células-Tronco Neurais/transplante
4.
Quito; s.n; 1996. 67 p. tab, graf.
Tese em Espanhol | LILACS | ID: lil-208526

RESUMO

Los antiinflamatorios no esteroidales (AINES) son medicamentos de uso común en problemas músculo-esqueléticos y artríticos; su utilización está asociada a múltiples efectos colaterales, siendo los gastrointestinales los más frecuentes y graves (gastropatía pos AINEs), que a veces obligan a la suspensión del tratamiento. Los análogos de las prostaglandinas y los inhibidores de la boma de protones, que actúan mediante efecto citoprotector y antisecretorio en la mucosa gastrointestinal, han demostrado efectividad protectora como la gastropatía por AINEs en varios estudios por separado. Actualmente disponemos del análogo sintético de las prostaglandinas E1, el misoprostol y el inhibidor de la bomba de protones, Omeprazol.


Assuntos
Humanos , Masculino , Feminino , Adulto , Misoprostol , Omeprazol , Prostaglandinas Sintéticas , Gastropatias
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa