RESUMO
Little is known about the effects of statins, which are cholesterol-lowering drugs, on the bioenergetic functions of mitochondria in the brain. This study aimed to elucidate the direct effects of atorvastatin and simvastatin on the bioenergetics of isolated rat brain mitochondria by measuring the statin-induced changes in respiratory chain activity, ATP synthesis efficiency, and the production of reactive oxygen species (ROS). Our results in isolated brain mitochondria are the first to demonstrate that atorvastatin and simvastatin dose-dependently significantly inhibit the activity of the mitochondrial respiratory chain, resulting in a decreased respiratory rate, a decreased membrane potential, and increased ROS formation. Moreover, the tested statins reduced mitochondrial coupling parameters, the ADP/O ratio, the respiratory control ratio, and thus, the oxidative phosphorylation efficiency in brain mitochondria. Among the oxidative phosphorylation complexes, statin-induced mitochondrial impairment concerned complex I, complex III, and ATP synthase activity. The calcium-containing atorvastatin had a significantly more substantial effect on isolated brain mitochondria than simvastatin. The higher inhibitory effect of atorvastatin was dependent on calcium ions, which may lead to the disruption of calcium homeostasis in mitochondria. These findings suggest that while statins are effective in their primary role as cholesterol-lowering agents, their use may impair mitochondrial function, which may have consequences for brain health, particularly when mitochondrial energy efficiency is critical.
Assuntos
Atorvastatina , Encéfalo , Metabolismo Energético , Mitocôndrias , Espécies Reativas de Oxigênio , Sinvastatina , Animais , Atorvastatina/farmacologia , Sinvastatina/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ratos , Metabolismo Energético/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Cálcio/metabolismoRESUMO
BACKGROUND: Conventional methods to measure oxygen consumption, such as Clark-type electrodes, have limitations such as requiring a large amount of starting material. Moreover, commercially available kits for high-throughput methods are usually optimized for animal cells and mitochondria. Here, we present a novel method to measure the oxygen consumption rate using a high-throughput assay in isolated mitochondria of European beech seeds. To perform the measurements, we adapted the Agilent Seahorse XF Cell Mito Stress Test Kit protocol for measurements on plant mitochondria. RESULTS: The optimized protocol for OCR measurement of mitochondria isolated from beech seeds allowed the observation of storage period-dependent gradual decreases in non-phosphorylating respiration, phosphorylating respiration and maximal FCCP-stimulated respiration. The longer the seeds were stored, the greater the impairment of respiratory function. CONCLUSIONS: Thanks to this method it is possible to minimize the amount of plant material and conduct research to obtain information on the respiratory condition and activity of plant mitochondria, including the efficiency of oxidative phosphorylation and the maximum oxidative capacity of the respiratory chain. We demonstrated that the improved protocol is suitable for study of plant material.
Assuntos
Respiração Celular , Mitocôndrias , Animais , Mitocôndrias/metabolismo , Consumo de Oxigênio , Transporte de Elétrons , Oxirredução , Plantas , Oxigênio/metabolismoRESUMO
Inflammation, although necessary to fight infections, becomes a threat when it exceeds the capability of the immune system to control it. In addition, inflammation is a cause and/or symptom of many different disorders, including metabolic, neurodegenerative, autoimmune and cardiovascular diseases. Comorbidities and advanced age are typical predictors of more severe cases of seasonal viral infection, with COVID-19 a clear example. The primary importance of mitogen-activated protein kinases (MAPKs) in the course of COVID-19 is evident in the mechanisms by which cells are infected with SARS-CoV-2; the cytokine storm that profoundly worsens a patient's condition; the pathogenesis of diseases, such as diabetes, obesity, and hypertension, that contribute to a worsened prognosis; and post-COVID-19 complications, such as brain fog and thrombosis. An increasing number of reports have revealed that MAPKs are regulated by carbon dioxide (CO2); hence, we reviewed the literature to identify associations between CO2 and MAPKs and possible therapeutic benefits resulting from the elevation of CO2 levels. CO2 regulates key processes leading to and resulting from inflammation, and the therapeutic effects of CO2 (or bicarbonate, HCO3-) have been documented in all of the abovementioned comorbidities and complications of COVID-19 in which MAPKs play roles. The overlapping MAPK and CO2 signalling pathways in the contexts of allergy, apoptosis and cell survival, pulmonary oedema (alveolar fluid resorption), and mechanical ventilation-induced responses in lungs and related to mitochondria are also discussed. Video Abstract.
Assuntos
COVID-19 , Dióxido de Carbono , Humanos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , SARS-CoV-2 , Proteínas Quinases Ativadas por Mitógeno/metabolismo , InflamaçãoRESUMO
Uncoupling proteins (UCPs) are mitochondrial inner membrane transporters that mediate free-fatty-acid-induced, purine-nucleotide-inhibited proton leak into the mitochondrial matrix, thereby uncoupling respiratory substrate oxidation from ATP synthesis. The aim of this study was to provide functional evidence that the putative Acucp gene of the free-living protozoan amoeba, A. castellanii, encodes the mitochondrial protein with uncoupling activity characteristic of UCPs and to investigate its role during oxidative stress. We report the sequencing and cloning of a complete Acucp coding sequence, its phylogenetic analysis, and the heterologous expression of AcUCP in the S. cerevisiae strain InvSc1. Measurements of mitochondrial respiratory activity and membrane potential indicate that the heterologous expression of AcUCP causes AcUCP-mediated uncoupling activity. In addition, in a model of oxidative stress with increased reactive oxygen species levels (superoxide dismutase 1 knockout yeasts), AcUCP expression strongly promotes cell survival and growth. The level of superoxide anion radicals is greatly reduced in the ΔSOD1 strain expressing AcUCP. These results suggest that AcUCP targeted to yeast mitochondria causes uncoupling and may act as an antioxidant system. Phylogenetic analysis shows that the A. castellanii UCP diverges very early from other UCPs, but clearly locates within the UCP subfamily rather than among other mitochondrial anion carrier proteins.
RESUMO
Mitogen-activated protein kinase (MAPK) signalling pathways are crucial for developmental processes, oncogenesis, and inflammation, including the production of proinflammatory cytokines caused by reactive oxygen species and upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. There are no drugs that can effectively prevent excessive inflammatory responses in endothelial cells in the lungs, heart, brain, and kidneys, which are considered the main causes of severe coronavirus disease 2019 (COVID-19). In this work, we demonstrate that human MAPKs, i.e. extracellular signal-regulated kinases 1 and 2 (ERK1/2), are CO2 sensors and CO2 is an efficient anti-inflammatory compound that exerts its effects through inactivating ERK1/2 in cultured endothelial cells when the CO2 concentration is elevated. CO2 is a potent inhibitor of cellular proinflammatory responses caused by H2O2 or the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2. ERK1/2 activated by the combined action of RBD and cytokines crucial for the development of severe COVID-19, i.e. interferon-gamma (IFNγ) and tumour necrosis factor-α (TNFα), are more effectively inactivated by CO2 than by dexamethasone or acetylsalicylic acid in human bronchial epithelial cells. Previously, many preclinical and clinical studies showed that the transient application of 5-8% CO2 is safe and effective in the treatment of many diseases. Therefore, our research indicates that CO2 may be used for the treatment of COVID-19 as well as the modification of hundreds of cellular pathways.
Assuntos
Anti-Inflamatórios/farmacologia , Tratamento Farmacológico da COVID-19 , Dióxido de Carbono/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , COVID-19/imunologia , COVID-19/patologia , Linhagem Celular , Células Endoteliais da Veia Umbilical Humana , Humanos , Peróxido de Hidrogênio/toxicidade , Inflamação/tratamento farmacológico , Interferon gama/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Domínios Proteicos/efeitos dos fármacos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Fator de Necrose Tumoral alfa/efeitos dos fármacosRESUMO
Sixteen adult, 4-month-old male Wistar rats were randomly assigned to the training group (n = 8) or the control group (n = 8). We elucidated the effects of 8 weeks of endurance training on coenzyme Q (Q) content and the formation of reactive oxygen species (ROS) at the tissue level and in isolated mitochondria of the rat heart, liver and brain. We demonstrated that endurance training enhanced mitochondrial biogenesis in all tested organs, while a significant increase in the Q redox state was observed in the heart and brain, indicating an elevated level of QH2 as an antioxidant. Moreover, endurance training increased the mQH2 antioxidant pool in the mitochondria of the heart and liver, but not in the brain. At the tissue and isolated mitochondria level, an increase in ROS formation was only observed in the heart. ROS formation observed in the mitochondria of individual rat tissues after training may be associated with changes in the activity/amount of individual components of the oxidative phosphorylation system and its molecular organization, as well as with the size of the oxidized pool of mitochondrial Q acting as an electron carrier in the respiratory chain. Our results indicate that tissue-dependent changes induced by endurance training in the cellular and mitochondrial QH2 pool acting as an antioxidant and in the mitochondrial Q pool serving the respiratory chain may serve important roles in energy metabolism, redox homeostasis and the level of oxidative stress.
Assuntos
Transporte de Elétrons , Mitocôndrias/fisiologia , Oxirredução , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo , Ubiquinona/análogos & derivados , Animais , Encéfalo/metabolismo , Treino Aeróbico , Coração , Peróxido de Hidrogênio/metabolismo , Fígado/metabolismo , Miocárdio/metabolismo , Especificidade de Órgãos , Estresse Oxidativo , Ratos , Ubiquinona/metabolismoRESUMO
The activity and quantity of mitochondrial proteins and the mitochondrial volume density (MitoVD) are higher in trained muscles; however, the underlying mechanisms remain unclear. Our goal was to determine if 20 weeks' endurance training simultaneously increases running performance, the amount and activity of mitochondrial proteins, and MitoVD in the gastrocnemius muscle in humans. Eight healthy, untrained young men completed a 20-week moderate-intensity running training program. The training increased the mean speed of a 1500 m run by 14.0% (p = 0.008) and the running speed at 85% of maximal heart rate by 9.6% (p = 0.008). In the gastrocnemius muscle, training significantly increased mitochondrial dynamics markers, i.e., peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) by 23%, mitochondrial transcription factor A (TFAM) by 29%, optic artrophy-1 (OPA1) by 31% and mitochondrial fission factor (MFF) by 44%, and voltage-dependent anion channel 1 (VDAC1) by 30%. Furthermore, training increased the amount and maximal activity of citrate synthase (CS) by 10% and 65%, respectively, and the amount and maximal activity of cytochrome c oxidase (COX) by 57% and 42%, respectively, but had no effect on the total MitoVD in the gastrocnemius muscle. We concluded that not MitoVD per se, but mitochondrial COX activity (reflecting oxidative phosphorylation activity), should be regarded as a biomarker of muscle adaptation to endurance training in beginner runners.
Assuntos
Treino Aeróbico , Condicionamento Físico Animal , Animais , Citrato (si)-Sintase/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Masculino , Proteínas Mitocondriais/metabolismo , Tamanho Mitocondrial , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Condicionamento Físico Animal/fisiologia , Canal de Ânion 1 Dependente de Voltagem/metabolismoRESUMO
Mitochondrial biogenesis is a highly controlled process that depends on diverse signalling pathways responding to cellular and environmental signals. AMP-activated protein kinase (AMPK) is a critical metabolic enzyme that acts at a central control point in cellular energy homeostasis. Numerous studies have revealed the crucial roles of AMPK in the regulation of mitochondrial biogenesis; however, molecular mechanisms underlying this process are still largely unknown. Previously, we have shown that, in cellular slime mould Dictyostelium discoideum, the overexpression of the catalytic α subunit of AMPK led to enhanced mitochondrial biogenesis, which was accompanied by reduced cell growth and aberrant development. Here, we applied mass spectrometry-based proteomics of Dictyostelium mitochondria to determine the impact of chronically active AMPKα on the phosphorylation state and abundance of mitochondrial proteins and to identify potential protein targets leading to the biogenesis of mitochondria. Our results demonstrate that enhanced mitochondrial biogenesis is associated with variations in the phosphorylation levels and abundance of proteins related to energy metabolism, protein synthesis, transport, inner membrane biogenesis, and cellular signalling. The observed changes are accompanied by elevated mitochondrial respiratory activity in the AMPK overexpression strain. Our work is the first study reporting on the global phosphoproteome profiling of D. discoideum mitochondria and its changes as a response to constitutively active AMPK. We also propose an interplay between the AMPK and mTORC1 signalling pathways in controlling the cellular growth and biogenesis of mitochondria in Dictyostelium as a model organism.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Dictyostelium/enzimologia , Proteínas Mitocondriais/metabolismo , Biogênese de Organelas , Ativação Enzimática , FosforilaçãoRESUMO
Endothelial mitochondrial dysfunction is considered to be the main cause of cardiovascular disease. The aim of this research was to elucidate the effects of cholesterol-lowering statins on the aerobic metabolism of endothelial cells at the cellular and mitochondrial levels. In human umbilical vein endothelial cells (EA.hy926), six days of exposure to 100 nM atorvastatin (ATOR) induced a general decrease in mitochondrial respiration. No changes in mitochondrial biogenesis, cell viability, or ATP levels were observed, whereas a decrease in Coenzyme Q10 (Q10) content was accompanied by an increase in intracellular reactive oxygen species (ROS) production, although mitochondrial ROS production remained unchanged. The changes caused by 100 nM pravastatin were smaller than those caused by ATOR. The ATOR-induced changes at the respiratory chain level promoted increased mitochondrial ROS production. In addition to the reduced level of mitochondrial Q10, the activity of Complex III was decreased, and the amount of Complex III in a supercomplex with Complex IV was diminished. These changes may cause the observed decrease in mitochondrial membrane potential and an increase in Q10 reduction level as a consequence, leading to elevated mitochondrial ROS formation. The above observations highlight the role of endothelial mitochondria in response to potential metabolic adaptations related to the chronic exposure of endothelial cells to statins.
Assuntos
Atorvastatina/farmacologia , Células Endoteliais/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Pravastatina/farmacologia , Linhagem Celular , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismoRESUMO
A large number of diverse mechanisms that lead to cytoprotection have been described to date. Perhaps, not surprisingly, the role of mitochondria in these phenomena is notable. In addition to being metabolic centers, due to their role in cell catabolism, ATP synthesis, and biosynthesis these organelles are triggers and/or end-effectors of a large number of signaling pathways. Their role in the regulation of the intrinsic apoptotic pathway, calcium homeostasis, and reactive oxygen species signaling is well documented. In this review, we aim to characterize the prospects of influencing cytoprotective mitochondrial signaling routes by natural substances of plant origin, namely, flavonoids (e.g., flavanones, flavones, flavonols, flavan-3-ols, anthocyanidins, and isoflavones). Flavonoids are a family of widely distributed plant secondary metabolites known for their beneficial effects on human health and are widely applied in traditional medicine. Their pharmacological characteristics include antioxidative, anticarcinogenic, anti-inflammatory, antibacterial, and antidiabetic properties. Here, we focus on presenting mitochondria-mediated cytoprotection against various insults. Thus, the role of flavonoids as antioxidants and modulators of antioxidant cellular response, apoptosis, mitochondrial biogenesis, autophagy, and fission and fusion is reported. Finally, an emerging field of flavonoid-mediated changes in the activity of mitochondrial ion channels and their role in cytoprotection is outlined.
Assuntos
Antioxidantes/farmacologia , Citoproteção , Flavonoides/farmacologia , Mitocôndrias/efeitos dos fármacos , Animais , Humanos , Transdução de SinaisRESUMO
Naringenin, a flavanone obtained from citrus fruits and present in many traditional Chinese herbal medicines, has been shown to have various beneficial effects on cells both in vitro and in vivo. Although the antioxidant activity of naringenin has long been believed to be crucial for its effects on cells, mitochondrial pathways (including mitochondrial ion channels) are emerging as potential targets for the specific pharmacological action of naringenin in cardioprotective strategies. In the present study, we describe interactions between the mitochondrial large-conductance calcium-regulated potassium channel (mitoBKCa channel) and naringenin. Using the patch-clamp method, we showed that 10 µM naringenin activated the mitoBKCa channel present in endothelial cells. In the presence of 30 µM Ca2+, the increase in the mitoBKCa channel probability of opening from approximately 0.25 to 0.50 at -40 mV was observed. In addition, regulation of the mitoBKCa channel by naringenin was dependent on the concentration of calcium ions. To confirm our data, physiological studies on the mitochondria were performed. An increase in oxygen consumption and a decrease in membrane potential was observed after naringenin treatment. In addition, contributions of the mitoBKCa channel to apoptosis and necrosis were investigated. Naringenin protected cells against damage induced by tumor necrosis factor (TNF-) in combination with cycloheximide. In this study, we demonstrated that the flavonoid naringenin can activate the mitoBKCa channel present in the inner mitochondrial membrane of endothelial cells. Our studies describing the regulation of the mitoBKCa channel by this natural, plant-derived substance may help to elucidate flavonoid-induced cytoprotective mechanisms.
Assuntos
Citrus/química , Endotélio Vascular/efeitos dos fármacos , Flavanonas/farmacologia , Flavonoides/farmacologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Mitocôndrias/efeitos dos fármacos , Cálcio/metabolismo , Células Cultivadas , Citoproteção , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Humanos , Transporte de Íons , Potenciais da MembranaRESUMO
Coenzyme Q is a fat-soluble molecule present in all cell membranes, including the inner mitochondrial membrane. Mitochondrial Q (mQ) is a key electron carrier in the respiratory chain and an important antioxidant. On the other hand, mQ participates in the production by respiratory chain of mitochondrial reactive oxygen species (mROS) that are formed as a byproduct of oxygen metabolism or under oxidative stress conditions. Increased mROS production can lead to a series of oxidative damage that underlies cell aging or a number of diseases. In addition, mROS act as signaling molecules. Respiratory chain electron carriers, primarily mQ-related protein complexes, are considered the main mROS production sites. With age, the level of Q, and in particular its reduced form, decreases in the body. Disorders associated with coenzyme Q deficiency are mainly associated with excessive mROS production and a decrease in ATP production, which may result in mitochondrial, cardiovascular or neurodegenerative diseases.
Assuntos
Mitocôndrias/metabolismo , Ubiquinona/metabolismo , Transporte de Elétrons , Humanos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Ubiquinona/deficiênciaRESUMO
Flavonoids belong to a large group of polyphenolic compounds that are widely present in plants. Certain flavonoids, including naringenin, have cytoprotective properties. Although the antioxidant effect has long been thought to be a crucial factor accounting for the cellular effects of flavonoids, mitochondrial channels have emerged recently as targets for cytoprotective strategies. In the present study, we characterized interactions between naringenin and the mitochondrial potassium (mitoBKCa and mitoKATP ) channels recently described in dermal fibroblasts. With the use of the patch-clamp technique and mitoplasts isolated from primary human dermal fibroblast cells, our study shows that naringenin in micromolar concentrations leads to an increase in mitoBKCa channel activity. The opening probability of the channel decreased from 0.97 in the control conditions (200 µmol/L Ca2+ ) to 0.06 at a low Ca2+ level (1 µmol/L) and increased to 0.85 after the application of 10 µmol/L naringenin. Additionally, the activity of the mitoKATP channel increased following the application of 10 µmol/L naringenin. To investigate the effects of naringenin on mitochondrial function, the oxygen consumption of dermal fibroblast cells was measured in potassium-containing media. The addition of naringenin significantly and dose-dependently increased the respiratory rate from 5.8 ± 0.2 to 14.0 ± 0.6 nmol O2 × min-1 × mg protein-1 . Additionally, a Raman spectroscopy analysis of skin penetration indicated that the naringenin was distributed in all skin layers, including the epidermis and dermis. In this study, we demonstrated that a flavonoid, naringenin, can activate two potassium channels present in the inner mitochondrial membrane of dermal fibroblasts.
Assuntos
Fibroblastos/efeitos dos fármacos , Flavanonas/farmacologia , Canais de Potássio/metabolismo , Pele/efeitos dos fármacos , Adulto , Antioxidantes/metabolismo , Mama/metabolismo , Cálcio/metabolismo , Células Cultivadas , Derme/metabolismo , Diazóxido/farmacologia , Feminino , Fibroblastos/citologia , Humanos , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Consumo de Oxigênio , Técnicas de Patch-Clamp , Pele/citologia , Análise Espectral RamanRESUMO
Energy homeostasis in mitochondria is vital for proper muscle cell function. In this review we will focus on cardiac and skeletal muscle energy-dissipating systems, i.e., mitochondrial potassium channels and uncoupling proteins. Despite the molecular differences between these proteins both of them may regulate the generation of reactive oxygen species. Hence, they can both modulate pro-life and -death signaling in response to the needs of the muscle cell. Certain mitochondrial potassium channels (such as the ATP-regulated and large conductance calcium-activated mitochondrial potassium channels) and uncoupling proteins may be regulated in a similar manner suggesting that both are part of the energy-dissipating hub in muscle mitochondria. Understanding the role of these proteins, especially in the context of ischemia-reperfusion injury of cardiac muscle, may be important for pharmacological intervention. This review highlights several aspects of the regulation of mitochondrial potassium channels and uncoupling proteins in muscle mitochondria and their association with diseases.
Assuntos
Metabolismo Energético , Mitocôndrias Musculares/metabolismo , Proteínas de Desacoplamento Mitocondrial/metabolismo , Canais de Potássio/metabolismo , Animais , Espécies Reativas de Oxigênio/metabolismoRESUMO
Metal hyperaccumulating plants should have extremely efficient defense mechanisms, enabling growth and development in a polluted environment. Brassica species are known to display hyperaccumulation capability. Brassica juncea (Indiana mustard) v. Malopolska plants were exposed to trace elements, i.e., cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn), at a concentration of 50 µM and were then harvested after 96 h for analysis. We observed a high index of tolerance (IT), higher than 90%, for all B. juncea plants treated with the four metals, and we showed that Cd, Cu, Pb, and Zn accumulation was higher in the above-ground parts than in the roots. We estimated the metal effects on the generation of reactive oxygen species (ROS) and the levels of protein oxidation, as well as on the activity and gene expression of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). The obtained results indicate that organo-specific ROS generation was higher in plants exposed to essential metal elements (i.e., Cu and Zn), compared with non-essential ones (i.e., Cd and Pb), in conjunction with SOD, CAT, and APX activity and expression at the level of encoding mRNAs and existing proteins. In addition to the potential usefulness of B. juncea in the phytoremediation process, the data provide important information concerning plant response to the presence of trace metals.
Assuntos
Antioxidantes/metabolismo , Biodegradação Ambiental , Metais/metabolismo , Mostardeira/fisiologia , Biomassa , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metais Pesados/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismoRESUMO
Mitochondrial ATP-regulated potassium channels are present in the inner membrane of the mitochondria of various cells. In the present study, we show for the first time mitochondrial ATP-regulated potassium channels in human dermal fibroblast cells. Using the patch-clamp technique on the inner mitochondrial membrane of fibroblasts, we detected a potassium channel with a mean conductance equal to 100 pS in symmetric 150â¯mM KCl. The activity of this channel was inhibited by a complex of ATP/Mg2+ and activated by potassium channel openers such as diazoxide or BMS 191095. Channel activity was inhibited by antidiabetic sulfonylurea glibenclamide and 5-hydroxydecanoic acid. The influence of substances modulating ATP-regulated potassium channel activity on oxygen consumption and membrane potential of isolated fibroblast mitochondria was also studied. Additionally, the potassium channel opener diazoxide lowered the amount of superoxide formed in isolated fibroblast mitochondria. Using reverse transcriptase-PCR, we found an mRNA transcript for the KCNJ1(ROMK) channel. The presence of ROMK protein was observed in the inner mitochondrial membrane fraction. Moreover, colocalization of the ROMK protein and a mitochondrial marker in the mitochondria of fibroblast cells was shown by immunofluorescence. In summary, the ATP-regulated mitochondrial potassium channel in a dermal fibroblast cell line have been identified.
Assuntos
Derme/metabolismo , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Linhagem Celular , Derme/citologia , Fibroblastos/citologia , Humanos , Mitocôndrias/genética , Canais de Potássio Corretores do Fluxo de Internalização/genéticaRESUMO
The purpose of this research was to elucidate the direct effects of two popular blood cholesterol-lowering drugs used to treat cardiovascular diseases, atorvastatin and pravastatin, on respiratory function, membrane potential, and reactive oxygen species formation in mitochondria isolated from human umbilical vein endothelial cells (EA.hy926 cell line). Hydrophilic pravastatin did not significantly affect endothelial mitochondria function. In contrast, hydrophobic calcium-containing atorvastatin induced a loss of outer mitochondrial membrane integrity, an increase in hydrogen peroxide formation, and reductions in maximal (phosphorylating or uncoupled) respiratory rate, membrane potential and oxidative phosphorylation efficiency. The atorvastatin-induced changes indicate an impairment of mitochondrial function at the level of ATP synthesis and at the level of the respiratory chain, likely at complex I and complex III. The atorvastatin action on endothelial mitochondria was highly dependent on calcium ions and led to a disturbance in mitochondrial calcium homeostasis. Uptake of calcium ions included in atorvastatin molecule induced mitochondrial uncoupling that enhanced the inhibition of the mitochondrial respiratory chain by atorvastatin. Our results indicate that hydrophobic calcium-containing atorvastatin, widely used as anti-atherosclerotic agent, has a direct negative action on isolated endothelial mitochondria.
Assuntos
Atorvastatina/toxicidade , Inibidores de Hidroximetilglutaril-CoA Redutases/toxicidade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Respiração/efeitos dos fármacos , Cálcio/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Pravastatina/toxicidade , Espécies Reativas de Oxigênio/metabolismoRESUMO
Uncoupling proteins (UCPs) belong to the mitochondrial anion carrier protein family and mediate regulated proton leak across the inner mitochondrial membrane. Free fatty acids, aldehydes such as hydroxynonenal, and retinoids activate UCPs. However, there are some controversies about the effective action of retinoids and aldehydes alone; thus, only free fatty acids are commonly accepted positive effectors of UCPs. Purine nucleotides such as GTP inhibit UCP-mediated mitochondrial proton leak. In turn, membranous coenzyme Q may play a role as a redox state-dependent metabolic sensor that modulates the complete activation/inhibition of UCPs. Such regulation has been observed for UCPs in microorganisms, plant and animal UCP1 homologues, and UCP1 in mammalian brown adipose tissue. The origin of UCPs is still under debate, but UCP homologues have been identified in all systematic groups of eukaryotes. Despite the differing levels of amino acid/DNA sequence similarities, functional studies in unicellular and multicellular organisms, from amoebae to mammals, suggest that the mechanistic regulation of UCP activity is evolutionarily well conserved. This review focuses on the regulatory feedback loops of UCPs involving free fatty acids, aldehydes, retinoids, purine nucleotides, and coenzyme Q (particularly its reduction level), which may derive from the early stages of evolution as UCP first emerged.
Assuntos
Aldeídos/metabolismo , Eucariotos/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Mamíferos/metabolismo , Proteínas de Desacoplamento Mitocondrial/metabolismo , Nucleotídeos de Purina/metabolismo , Ubiquinona/metabolismo , AnimaisRESUMO
In this review, we summarize our knowledge about mitochondrial potassium channels, with a special focus on unanswered questions in this field. The following potassium channels have been well described in the inner mitochondrial membrane: ATP-regulated potassium channel, Ca(2+)-activated potassium channel, the voltage-gated Kv1.3 potassium channel, and the two-pore domain TASK-3 potassium channel. The primary functional roles of these channels include regulation of mitochondrial respiration and the alteration of membrane potential. Additionally, they modulate the mitochondrial matrix volume and the synthesis of reactive oxygen species by mitochondria. Mitochondrial potassium channels are believed to contribute to cytoprotection and cell death. In this paper, we discuss fundamental issues concerning mitochondrial potassium channels: their molecular identity, channel pharmacology and functional properties. Attention will be given to the current problems present in our understanding of the nature of mitochondrial potassium channels. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Assuntos
Mitocôndrias/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Expressão Gênica , Humanos , Transporte de Íons , Mitocôndrias/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Especificidade de Órgãos , Plantas/efeitos dos fármacos , Plantas/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Cálcio-Ativados/antagonistas & inibidores , Canais de Potássio Cálcio-Ativados/genética , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Trypanosomatina/efeitos dos fármacos , Trypanosomatina/metabolismoRESUMO
The goal of our study was to assess the influence of chronic exposure to hypoxia on mitochondrial oxidative metabolism in human umbilical vein endothelial cells (EA.hy926 line) cultured for 6 days at 1% O2 tension. The hypoxia-induced effects were elucidated at the cellular and isolated mitochondria levels. Hypoxia elevated fermentation but did not change mitochondrial biogenesis or the aerobic respiratory capacity of endothelial cells. In endothelial cells, hypoxia caused a general decrease in mitochondrial respiration during carbohydrate, fatty acid, and amino acid oxidation but increased exclusively ketogenic amino acid oxidation. Hypoxia induced an elevation of intracellular and mitochondrial reactive oxygen species (ROS) formation, although cell viability was unchanged and antioxidant systems (superoxide dismutases SOD1 and SOD2, and uncoupling proteins (UCPs)) were not increased. In mitochondria from hypoxic cells, the opposite change was observed at the respiratory chain level, i.e., considerably elevated expression and activity of complex II, and decreased expression and activity of complex I were observed. The elevated activity of complex II resulted in an increase in succinate-sustained mitochondrial ROS formation, mainly through increased reverse electron transport. A hypoxia-induced decrease in UCP2 expression and activity was also observed. It can be concluded that the exposure to chronic hypoxia induces a shift from aerobic toward anaerobic catabolic metabolism. The hypoxia-induced increase in intracellular and mitochondrial ROS formation was not excessive and may be involved in endothelial signaling of hypoxic responses. Our results indicate an important role of succinate, complex II, and reverse electron transport in hypoxia-induced adjustments in endothelial cells.