Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genomics ; 11(1): 28, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29137650

RESUMO

BACKGROUND: Most mitochondrial and cytoplasmic aminoacyl-tRNA synthetases (aaRSs) are encoded by nuclear genes. Syndromic disorders resulting from mutation of aaRSs genes display significant phenotypic heterogeneity. We expand aaRSs-related phenotypes through characterization of the clinical and molecular basis of a novel autosomal-recessive syndrome manifesting severe mental retardation, ataxia, speech impairment, epilepsy, short stature, microcephaly, hypogonadism, and growth hormone deficiency. RESULTS: A G>A variant in exon 29 of VARS2 (c.3650G>A) (NM_006295) was identified in the index case. This homozygous variant was confirmed by Sanger sequencing and segregated with disease in the family studied. The c.3650G>A change results in alteration of arginine to histidine at residue 1217 (R1217H) of the mature protein and is predicted to be pathogenic. CONCLUSIONS: These findings contribute to a growing list of aaRSs disorders, broadens the spectrum of phenotypes attributable to VARS2 mutations, and provides new insight into genotype-phenotype correlations among the mitochondrial synthetase genes.


Assuntos
Epilepsia/genética , Antígenos HLA/genética , Hormônio do Crescimento Humano/deficiência , Hipogonadismo/genética , Deficiência Intelectual/genética , Valina-tRNA Ligase/genética , Estatura/genética , Mapeamento Cromossômico , Exoma , Feminino , Genes Recessivos , Transtornos do Crescimento/genética , Antígenos HLA/metabolismo , Hormônio do Crescimento Humano/genética , Humanos , Masculino , Linhagem , Gravidez , Síndrome , Valina-tRNA Ligase/metabolismo , Adulto Jovem
2.
Hum Genomics ; 11(1): 33, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29221463

RESUMO

CORRECTION: After publication of the article [1], it has been brought to our attention that there is a nomenclature issue with this article. At the time of acceptance, the VARS2 mutation was considered equivalent to the VARS2 mutation. However, this has changed so that VARS now only refers to shorter mitochondrial sequence of valyl-tRNA synthesase containing 1093 amino acids. "Therefore, in the context of this article, every usage of "VARS2" should be replaced with "VARS" when referring to the causative variant".

3.
Hum Genet ; 136(8): 921-939, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28600779

RESUMO

In this study, we report the experience of the only reference clinical next-generation sequencing lab in Saudi Arabia with the first 1000 families who span a wide-range of suspected Mendelian phenotypes. A total of 1019 tests were performed in the period of March 2016-December 2016 comprising 972 solo (index only), 14 duo (parents or affected siblings only), and 33 trio (index and parents). Multigene panels accounted for 672 tests, while whole exome sequencing (WES) represented the remaining 347 tests. Pathogenic or likely pathogenic variants that explain the clinical indications were identified in 34% (27% in panels and 43% in exomes), spanning 279 genes and including 165 novel variants. While recessive mutations dominated the landscape of solved cases (71% of mutations, and 97% of which are homozygous), a substantial minority (27%) were solved on the basis of dominant mutations. The highly consanguineous nature of the study population also facilitated homozygosity for many private mutations (only 32.5% of the recessive mutations are founder), as well as the first instances of recessive inheritance of previously assumed strictly dominant disorders (involving ITPR1, VAMP1, MCTP2, and TBP). Surprisingly, however, dual molecular diagnosis was only observed in 1.5% of cases. Finally, we have encountered candidate variants in 75 genes (ABHD6, ACY3, ADGRB2, ADGRG7, AGTPBP1, AHNAK2, AKAP6, ASB3, ATXN1L, C17orf62, CABP1, CCDC186, CCP110, CLSTN2, CNTN3, CNTN5, CTNNA2, CWC22, DMAP1, DMKN, DMXL1, DSCAM, DVL2, ECI1, EP400, EPB41L5, FBXL22, GAP43, GEMIN7, GIT1, GRIK4, GRSF1, GTRP1, HID1, IFNL1, KCNC4, LRRC52, MAP7D3, MCTP2, MED26, MPP7, MRPS35, MTDH, MTMR9, NECAP2, NPAT, NRAP, PAX7, PCNX, PLCH2, PLEKHF1, PTPN12, QKI, RILPL2, RIMKLA, RIMS2, RNF213, ROBO1, SEC16A, SIAH1, SIRT2, SLAIN2, SLC22A20, SMDT1, SRRT, SSTR1, ST20, SYT9, TSPAN6, UBR4, VAMP4, VPS36, WDR59, WDYHV1, and WHSC1) not previously linked to human phenotypes and these are presented to accelerate post-publication matchmaking. Two of these genes were independently mutated in more than one family with similar phenotypes, which substantiates their link to human disease (AKAP6 in intellectual disability and UBR4 in early dementia). If the novel candidate disease genes in this cohort are independently confirmed, the yield of WES will have increased to 83%, which suggests that most "negative" clinical exome tests are unsolved due to interpretation rather than technical limitations.


Assuntos
Exoma , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/epidemiologia , Genoma Humano , Consanguinidade , Feminino , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Masculino , Anotação de Sequência Molecular , Morbidade , Mutação , Fenótipo , Reprodutibilidade dos Testes , Arábia Saudita/epidemiologia , Análise de Sequência de DNA
4.
Hum Genomics ; 10(1): 32, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27671536

RESUMO

BACKGROUND: Fifty random genetically unstudied families (limb-girdle muscular dystrophy (LGMD)/myopathy) were screened with a gene panel incorporating 759 OMIM genes associated with neurological disorders. Average coverage of the CDS and 10 bp flanking regions of genes was 99 %. All families were referred to the Neurosciences Clinic of King Faisal Specialist Hospital and Research Centre, Saudi Arabia. Patients presented with muscle weakness affecting the pelvic and shoulder girdle. Muscle biopsy in all cases showed dystrophic or myopathic changes. Our main objective was to evaluate a neurological gene panel as a first-line diagnostic test for LGMD/myopathies. RESULTS: Our panel identified the mutation in 76 % of families (38/50; 11 novel). Thirty-four families had mutations in LGMD-related genes with four others having variants not typically associated with LGMD. The majority of cases had recessive inheritance with homoallelic pathogenic variants (97.4 %, 37/38), as expected considering the high rate of consanguinity in the study population. In one case, we detected a heterozygous mutation in DNAJB responsible for LGMD-1E. Our cohort included seven different subtypes of LGMD2. Mutations of DYSF were the most commonly identified cause of disease followed by that in CAPN3 and FKRP. Non-LGMD myopathies were due to mutations in genes associated with congenital disorder of glycosylation (ALG2), rigid spine muscular dystrophy 1 (SEPN1), inclusion body myopathy2/Nonaka myopathy (GNE), and neuropathy (WNK1). Whole exome sequencing (WES) of patients who remained undiagnosed with the neurological panel did not improve our diagnostic yield. CONCLUSIONS: Our neurological panel achieved a high clinical sensitivity (76 %) and is an effective first-line laboratory test in patients with LGMD and other myopathies. This sensitive, cost-effective, and rapid assay significantly assists clinical practice especially in these phenotypically and genetically heterogeneous disorders. Moreover, the application of the American College of Medical Genetics (ACMG) and Association for Molecular Pathology (AMP) guidelines applied in the classification of variant pathogenecity provides a clear interpretation for physicians on the relevance of such findings.

5.
Cell Syst ; 1(1): 72-87, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26594662

RESUMO

The panoply of microorganisms and other species present in our environment influence human health and disease, especially in cities, but have not been profiled with metagenomics at a city-wide scale. We sequenced DNA from surfaces across the entire New York City (NYC) subway system, the Gowanus Canal, and public parks. Nearly half of the DNA (48%) does not match any known organism; identified organisms spanned 1,688 bacterial, viral, archaeal, and eukaryotic taxa, which were enriched for harmless genera associated with skin (e.g., Acinetobacter). Predicted ancestry of human DNA left on subway surfaces can recapitulate U.S. Census demographic data, and bacterial signatures can reveal a station's history, such as marine-associated bacteria in a hurricane-flooded station. Some evidence of pathogens was found (Bacillus anthracis), but a lack of reported cases in NYC suggests that the pathogens represent a normal, urban microbiome. This baseline metagenomic map of NYC could help long-term disease surveillance, bioterrorism threat mitigation, and health management in the built environment of cities.

6.
Neuromuscul Disord ; 24(4): 353-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24461433

RESUMO

Congenital disorders of glycosylation are often associated with muscle weakness in apparent isolation or as part of a multi-systemic disorder. We report here the clinical and pathological features resulting from a homozygous mutation of ALG2 in an extended family. Phenotypic heterogeneity is observed among the small cohort of patients reported to date and is highlighted by our study. Linkage analysis, homozygozity mapping and whole exome sequencing followed clinical and pathological characterization of patients who presented with a congenital limb girdle pattern of weakness with no ocular or bulbar involvement. Nerve stimulation studies were consistent with a congenital myasthenic syndrome. Severity and progression of disease was variable. Muscle biopsies showed myopathic features, ragged red fibers and a sub-sarcolemmal accumulation of structurally normal mitochondria. Whole exome sequencing revealed an indel mutation c.214_224delGGGGACTGGCTdelinsAGTCCCCG, p.72_75delGDWLinsSPR in exon 1 of ALG2. Mutation of ALG2 manifested as a limb girdle pattern of muscle weakness with defects at both the neuromuscular junction and sarcomere. In addition the accumulation and distribution of mitochondria in the diseased muscle and the presence of ragged red fibers were supportive of a mitochondrial myopathy. ALG2 mutation results in a heterogeneous phenotype and care should be taken in categorization and treatment of these patients.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação ao Cálcio/genética , Erros Inatos do Metabolismo/patologia , Erros Inatos do Metabolismo/fisiopatologia , Mutação , Adolescente , Adulto , Análise Mutacional de DNA , Diagnóstico Diferencial , Família , Feminino , Glicosilação , Humanos , Masculino , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/genética , Doenças Musculares/diagnóstico , Síndromes Miastênicas Congênitas/diagnóstico , Miofibrilas/patologia , Linhagem , Fenótipo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa