Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Opt Express ; 31(6): 9319-9329, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157504

RESUMO

We present a telecommunication-compatible frequency-domain terahertz spectroscopy system realized by novel photoconductive antennas without using short-carrier-lifetime photoconductors. Built on a high-mobility InGaAs photoactive layer, these photoconductive antennas are designed with plasmonics-enhanced contact electrodes to achieve highly confined optical generation near the metal/semiconductor surface, which offers ultrafast photocarrier transport and, hence, efficient continuous-wave terahertz operation including both generation and detection. Consequently, using two plasmonic photoconductive antennas as a terahertz source and a terahertz detector, we successfully demonstrate frequency-domain spectroscopy with a dynamic range more than 95 dB and an operation bandwidth of 2.5 THz. Moreover, this novel approach to terahertz antenna design opens up a wide range of new possibilities for many different semiconductors and optical excitation wavelengths to be utilized, therefore bypassing short-carrier-lifetime photoconductors with limited availability.

2.
Physiol Plant ; 175(4): e13974, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37403811

RESUMO

Intra-specific trait variation (ITV) plays a role in processes at a wide range of scales from organs to ecosystems across climate gradients. Yet, ITV remains rarely quantified for many ecophysiological traits typically assessed for species means, such as pressure volume (PV) curve parameters including osmotic potential at full turgor and modulus of elasticity, which are important in plant water relations. We defined a baseline "reference ITV" (ITVref ) as the variation among fully exposed, mature sun leaves of replicate individuals of a given species grown in similar, well-watered conditions, representing the conservative sampling design commonly used for species-level ecophysiological traits. We hypothesized that PV parameters would show low ITVref relative to other leaf morphological traits, and that their intraspecific relationships would be similar to those previously established across species and proposed to arise from biophysical constraints. In a database of novel and published PV curves and additional leaf structural traits for 50 diverse species, we found low ITVref for PV parameters relative to other morphological traits, and strong intraspecific relationships among PV traits. Simulation modeling showed that conservative ITVref enables the use of species-mean PV parameters for scaling up from spectroscopic measurements of leaf water content to enable sensing of leaf water potential.


Assuntos
Ecossistema , Folhas de Planta , Humanos , Fenótipo , Folhas de Planta/fisiologia , Clima , Água
3.
Opt Express ; 30(2): 1584-1598, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209315

RESUMO

We present a bias-free photoconductive emitter that uses an array of nanoantennas on an InGaAs layer with a linearly graded Indium composition. The graded InGaAs structure creates a built-in electric field that extends through the entire photoconductive active region, enabling the efficient drift of the photo-generated electrons to the nanoantennas. The nanoantenna geometry is chosen so that surface plasmon waves are excited in response to a 1550 nm optical pump to maximize photo-generated carrier concentration near the nanoantennas, where the built-in electric field strength is maximized. With the combination of the plasmonic enhancement and built-in electric field, high-power terahertz pulses are generated without using any external bias voltage. We demonstrate the generation of terahertz pulses with 860 µW average power at an average optical pump power of 900 mW, exhibiting the highest radiation power compared to previously demonstrated telecommunication-compatible terahertz pulse emitters.

4.
Rep Prog Phys ; 83(6): 066101, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32208378

RESUMO

The high sensitivity detection of terahertz radiation is crucial for many chemical sensing, biomedical imaging, security screening, nondestructive quality control, high-data-rate communication, atmospheric, and astrophysics sensing applications. Among various terahertz detection techniques, heterodyne detection is of great interest for applications that require high spectral resolution. Heterodyne detection involves mixing the received terahertz radiation with a reference terahertz signal provided by a local oscillator and then down-converting it to an intermediate frequency for detection. The frequency of the intermediate frequency signal is usually chosen to be in the radio frequency regime, so that it can be accurately analyzed by well-developed radio frequency electronics, including amplifiers, filters, and spectrometers, for further processing. Heterodyne terahertz detection offers two major advantages over direct terahertz detection. First, the detected terahertz radiation is effectively enhanced by the reference local oscillator signal through the mixing process, thereby enabling the detection of very weak terahertz signals. Second, the detected noise power is effectively reduced by limiting the detected spectral bandwidth to the bandwidth of the intermediate frequency electronics. In this article, we present a broad overview of various types of heterodyne terahertz receivers, which utilize different electronic and optoelectronic techniques to down-convert the received terahertz signal to a radio frequency signal. We describe how the inherent nonlinearity of a Schottky diode, superconductor-insulator-superconductor junction, hot electron bolometer, and field-effect transistor can be utilized to mix the received terahertz radiation with a reference local oscillator signal from a gas laser, quantum cascade laser, photomixer, Gunn diode, IMPATT diode, and frequency multiplier and then down-convert it to a radio frequency signal. The down-converted radio frequency signal can be subsequently detected and analyzed by various backend spectrometers, including filter bank, acousto-optical, autocorrelator, fast Fourier transform, and chirp transform spectrometers. We also discuss how a photomixer pumped by a heterodyning optical beam can be used to down-convert the received terahertz radiation to a radio frequency signal with far fewer bandwidth constraints than conventional techniques. The advantages and disadvantages of different heterodyne receivers in terms of their noise performance, operation frequency, operation bandwidth, and operation temperature are discussed in detail.

5.
Opt Express ; 28(17): 24900-24907, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32907020

RESUMO

We present a technique for high-precision millimeter-wave frequency determination through plasmonic photomixing. Our technique utilizes a plasmonic photomixer pumped by an optical frequency comb with a high-stability millimeter-wave beat frequency. The plasmonic photomixer down-converts the millimeter-wave signal to the radio frequency regime at which high-accuracy frequency counters are available. The precision of this technique is determined by the frequency stability of the optical beat frequency, which can be directly characterized in the presented experimental setup. We demonstrate frequency measurement precision as low as 3.9×10-10 at 95 GHz through plasmonic photomixing without phase-locking the optical frequency comb.

6.
Opt Express ; 28(18): 26324-26335, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32906906

RESUMO

We present a telecommunication-compatible photoconductive terahertz detector realized without using any short-carrier-lifetime photoconductor. By utilizing plasmonic contact electrodes on a thin layer of high-mobility photoconductor, the presented detector offers a short transit time for the majority of the photocarriers in the absence of a short-carrier-lifetime photoconductor. Consequently, high-sensitivity terahertz detection is achieved with a record-high signal-to-noise ratio of 122 dB over a 3.6 THz bandwidth under an optical probe power of 10 mW. To achieve such a high sensitivity, the device geometry is chosen to maintain a high resistance and low Johnson Nyquist noise. This design approach can be widely applied for terahertz detection using various semiconductors and optical wavelengths, without being limited by the availability of short-carrier-lifetime photoconductors.

7.
Opt Express ; 28(3): 3835-3845, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32122045

RESUMO

We present a photoconductive terahertz detector operating at the 1 µm wavelength range at which high-power and compact Ytterbium-doped femtosecond fiber lasers are available. The detector utilizes an array of plasmonic nanoantennas to provide sub-picosecond transit time for the majority of photo-generated carriers to enable high-sensitivity terahertz detection without using a short-carrier-lifetime substrate. By using a high-mobility semiconductor substrate and preventing photocarrier recombination, the presented detector offers significantly higher sensitivity levels compared with previously demonstrated broadband photoconductive terahertz detectors operating at the 1 µm wavelength range. We demonstrate pulsed terahertz detection over a 4 THz bandwidth with a record-high signal-to-noise ratio of 95 dB at an average terahertz radiation power of 6.8 µW, when using an optical pump power of 30 mW.

8.
Opt Express ; 28(17): 24833-24844, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32907015

RESUMO

The stability of optical beats in a chaotically oscillating laser is compared to that of a free-running continuous-wave laser using a highly efficient plasmonic photomixer. Using a chaotically oscillating laser diode, stable optical beats are observed over an operation current range of 60-90 mA. The optical spectra are stable even with frequent mode hopping. In contrast, optical beats in a free-running continuous-wave laser are not stable compared to those of a chaotically oscillating laser, because of intermittent hopping of the laser modes. The high stability of chaotically oscillating lasers makes these lasers promising candidates for optical pump sources in terahertz time-domain spectroscopy systems.

9.
Opt Express ; 27(25): 36838-36845, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31873455

RESUMO

We present a heterodyne terahertz spectrometry platform based on plasmonic photomixing, which enables the resolution of narrow spectral signatures of gases over a broad terahertz frequency range. This plasmonic heterodyne spectrometer replaces the terahertz mixer and local oscillator of conventional heterodyne spectrometers with a plasmonic photomixer and a heterodyning optical pump beam, respectively. The heterodyning optical pump beam is formed by two continuous-wave, wavelength-tunable lasers with a broadly tunable terahertz beat frequency. This broadly tunable terahertz beat frequency enables spectrometry over a broad bandwidth, which is not restricted by the bandwidth limitations of conventional terahertz mixers and local oscillators. We use this plasmonic heterodyne spectrometry platform to resolve the spectral signatures of ammonia over a 1-4.5 THz frequency range.

10.
Small ; 14(44): e1802437, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30156383

RESUMO

Photoconductive antennas are commonly used for terahertz wave generation and detection. However, their relatively low radiation power and detection sensitivity often place limitations on the signal-to-noise ratio and operation bandwidth of terahertz imaging and spectroscopy systems. Several different techniques are attempted to address these limitations. The most promising ones take advantage of the unique tools provided by nanotechnology. In this review, the recent nanotechnology-enabled advances in photoconductive antennas, which use nanostructures, such as optical nanoantennas, plasmonic structures, and optical nanocavities, to increase the interaction of the optical pump beam with the photoconductive semiconductor, are discussed. All of these techniques are experimentally demonstrated to be efficient tools for enhancing the performance of photoconductive antennas for terahertz wave generation and detection.

11.
Rep Prog Phys ; 80(9): 094501, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28590254

RESUMO

Reconfigurable metamaterials have emerged as promising platforms for manipulating the spectral and spatial properties of terahertz waves without being limited by the characteristics of naturally existing materials. Here, we present a comprehensive overview of various types of reconfigurable metamaterials that are utilized to manipulate the intensity, phase, polarization, and propagation direction of terahertz waves. We discuss various reconfiguration mechanisms based on optical, electrical, thermal, and mechanical stimuli while using semiconductors, superconductors, phase-change materials, graphene, and electromechanical structures. The advantages and disadvantages of different reconfigurable metamaterial designs in terms of modulation efficiency, modulation bandwidth, modulation speed, and system complexity are discussed in detail.

12.
Opt Express ; 23(22): 28522-30, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26561122

RESUMO

We present a comprehensive analysis of spectral characteristics of terahertz radiation from plasmonic photomixers. We fabricate plasmonic photomixer prototypes with plasmonic contact electrode gratings on a low temperature grown GaAs substrate and characterize the spectral properties of the generated terahertz radiation by use of a heterodyne detection scheme. Our analysis shows that linewidth, stability, and frequency tuning range of the generated terahertz radiation are directly determined by linewidth, stability, and wavelength tuning range of optical pump beam and not affected by device geometry, substrate properties, optical pump power level and other operational settings. Our study indicates the crucial role of optical sources in realizing high performance terahertz spectroscopy and wireless communication systems based on plasmonic photomixers.

13.
Opt Express ; 23(25): 32035-43, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26698994

RESUMO

We present a comprehensive analysis of terahertz radiation from large area plasmonic photoconductive emitters in relation with characteristics of device substrate. Specifically, we investigate the radiation properties of large area plasmonic photoconductive emitters fabricated on GaAs substrates that exhibit short carrier lifetimes through low-temperature substrate growth and through epitaxially embedded rare-earth arsenide (ErAs and LuAs) nanoparticles in superlattice structures. Our analysis indicates that the utilized substrate composition and growth process for achieving short carrier lifetimes are crucial in determining substrate resistivity, carrier drift velocity, and carrier lifetime, which directly impact optical-to-terahertz conversion efficiency, radiation power, radiation bandwidth, and reliability of large area plasmonic photoconductive emitters.

14.
Opt Express ; 22(26): 32245-60, 2014 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-25607190

RESUMO

A miniature MEMS switch is designed, fabricated, and incorporated in a reconfigurable metallic mesh filter for broadband terahertz modulation. The mechanical, electrical, and geometrical properties of the MEMS switch are set to enable broadband terahertz modulation with relatively low modulation voltage, high modulation speed, and high device reliability. The implemented miniature MEMS switch exhibits an actuation voltage of 30 V, a fundamental mechanical resonance frequency of 272 kHz, and an actuation time of 1.23 µs, enabling terahertz modulation with a record high modulation depth of more than 70% over a terahertz band of 0.1-1.5 THz, with a modulation voltage of 30 V and modulation speeds exceeding 20 kHz.


Assuntos
Sistemas Microeletromecânicos/instrumentação , Microeletrodos , Processamento de Sinais Assistido por Computador/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Telecomunicações/instrumentação , Radiação Terahertz , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Dispositivos Ópticos
15.
Opt Lett ; 39(15): 4522-4, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25078218

RESUMO

We experimentally demonstrate an order of magnitude enhancement in the quasi-continuous-wave radiated power from a photomixer with plasmonic contact electrodes in comparison with an analogous conventional photomixer without plasmonic contact electrodes in the 0.25-2.5 THz frequency range when pumped at an optical wavelength of 1550 nm. The significant efficiency enhancement results from the unique capability of the plasmonic contact electrodes to reduce the average transport path of photocarriers to the device contact electrodes, increasing the ultrafast photocurrent that drives the terahertz antenna.

16.
Light Sci Appl ; 13(1): 178, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085224

RESUMO

Diffractive deep neural networks (D2NNs) are composed of successive transmissive layers optimized using supervised deep learning to all-optically implement various computational tasks between an input and output field-of-view. Here, we present a pyramid-structured diffractive optical network design (which we term P-D2NN), optimized specifically for unidirectional image magnification and demagnification. In this design, the diffractive layers are pyramidally scaled in alignment with the direction of the image magnification or demagnification. This P-D2NN design creates high-fidelity magnified or demagnified images in only one direction, while inhibiting the image formation in the opposite direction-achieving the desired unidirectional imaging operation using a much smaller number of diffractive degrees of freedom within the optical processor volume. Furthermore, the P-D2NN design maintains its unidirectional image magnification/demagnification functionality across a large band of illumination wavelengths despite being trained with a single wavelength. We also designed a wavelength-multiplexed P-D2NN, where a unidirectional magnifier and a unidirectional demagnifier operate simultaneously in opposite directions, at two distinct illumination wavelengths. Furthermore, we demonstrate that by cascading multiple unidirectional P-D2NN modules, we can achieve higher magnification factors. The efficacy of the P-D2NN architecture was also validated experimentally using terahertz illumination, successfully matching our numerical simulations. P-D2NN offers a physics-inspired strategy for designing task-specific visual processors.

17.
Sci Adv ; 10(24): eadn9420, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38865455

RESUMO

We introduce an information-hiding camera integrated with an electronic decoder that is jointly optimized through deep learning. This system uses a diffractive optical processor, which transforms and hides input images into ordinary-looking patterns that deceive/mislead observers. This information-hiding transformation is valid for infinitely many combinations of secret messages, transformed into ordinary-looking output images through passive light-matter interactions within the diffractive processor. By processing these output patterns, an electronic decoder network accurately reconstructs the original information hidden within the deceptive output. We demonstrated our approach by designing information-hiding diffractive cameras operating under various lighting conditions and noise levels, showing their robustness. We further extended this framework to multispectral operation, allowing the concealment and decoding of multiple images at different wavelengths, performed simultaneously. The feasibility of our framework was also validated experimentally using terahertz radiation. This optical encoder-electronic decoder-based codesign provides a high speed and energy efficient information-hiding camera, offering a powerful solution for visual information security.

18.
Nat Commun ; 15(1): 4989, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862510

RESUMO

Optical phase conjugation (OPC) is a nonlinear technique used for counteracting wavefront distortions, with applications ranging from imaging to beam focusing. Here, we present a diffractive wavefront processor to approximate all-optical phase conjugation. Leveraging deep learning, a set of diffractive layers was optimized to all-optically process an arbitrary phase-aberrated input field, producing an output field with a phase distribution that is the conjugate of the input wave. We experimentally validated this wavefront processor by 3D-fabricating diffractive layers and performing OPC on phase distortions never seen during training. Employing terahertz radiation, our diffractive processor successfully performed OPC through a shallow volume that axially spans tens of wavelengths. We also created a diffractive phase-conjugate mirror by combining deep learning-optimized diffractive layers with a standard mirror. Given its compact, passive and multi-wavelength nature, this diffractive wavefront processor can be used for various applications, e.g., turbidity suppression and aberration correction across different spectral bands.

19.
Light Sci Appl ; 13(1): 120, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38802376

RESUMO

Complex field imaging, which captures both the amplitude and phase information of input optical fields or objects, can offer rich structural insights into samples, such as their absorption and refractive index distributions. However, conventional image sensors are intensity-based and inherently lack the capability to directly measure the phase distribution of a field. This limitation can be overcome using interferometric or holographic methods, often supplemented by iterative phase retrieval algorithms, leading to a considerable increase in hardware complexity and computational demand. Here, we present a complex field imager design that enables snapshot imaging of both the amplitude and quantitative phase information of input fields using an intensity-based sensor array without any digital processing. Our design utilizes successive deep learning-optimized diffractive surfaces that are structured to collectively modulate the input complex field, forming two independent imaging channels that perform amplitude-to-amplitude and phase-to-intensity transformations between the input and output planes within a compact optical design, axially spanning ~100 wavelengths. The intensity distributions of the output fields at these two channels on the sensor plane directly correspond to the amplitude and quantitative phase profiles of the input complex field, eliminating the need for any digital image reconstruction algorithms. We experimentally validated the efficacy of our complex field diffractive imager designs through 3D-printed prototypes operating at the terahertz spectrum, with the output amplitude and phase channel images closely aligning with our numerical simulations. We envision that this complex field imager will have various applications in security, biomedical imaging, sensing and material science, among others.

20.
Light Sci Appl ; 13(1): 43, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38310118

RESUMO

Image denoising, one of the essential inverse problems, targets to remove noise/artifacts from input images. In general, digital image denoising algorithms, executed on computers, present latency due to several iterations implemented in, e.g., graphics processing units (GPUs). While deep learning-enabled methods can operate non-iteratively, they also introduce latency and impose a significant computational burden, leading to increased power consumption. Here, we introduce an analog diffractive image denoiser to all-optically and non-iteratively clean various forms of noise and artifacts from input images - implemented at the speed of light propagation within a thin diffractive visual processor that axially spans <250 × λ, where λ is the wavelength of light. This all-optical image denoiser comprises passive transmissive layers optimized using deep learning to physically scatter the optical modes that represent various noise features, causing them to miss the output image Field-of-View (FoV) while retaining the object features of interest. Our results show that these diffractive denoisers can efficiently remove salt and pepper noise and image rendering-related spatial artifacts from input phase or intensity images while achieving an output power efficiency of ~30-40%. We experimentally demonstrated the effectiveness of this analog denoiser architecture using a 3D-printed diffractive visual processor operating at the terahertz spectrum. Owing to their speed, power-efficiency, and minimal computational overhead, all-optical diffractive denoisers can be transformative for various image display and projection systems, including, e.g., holographic displays.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa