Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(40): 16199-204, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24048027

RESUMO

Glucagon-like peptide 1 (GLP-1), produced in the intestine and the brain, can stimulate insulin secretion from the pancreas and alleviate type 2 diabetes. The cytokine interleukin-6 (IL-6) may enhance insulin secretion from ß-cells by stimulating peripheral GLP-1 production. GLP-1 and its analogs also reduce food intake and body weight, clinically beneficial actions that are likely exerted at the level of the CNS, but otherwise are poorly understood. The cytokines IL-6 and interleukin 1ß (IL-1ß) may exert an anti-obesity effect in the CNS during health. Here we found that central injection of a clinically used GLP-1 receptor agonist, exendin-4, potently increased the expression of IL-6 in the hypothalamus (11-fold) and the hindbrain (4-fold) and of IL-1ß in the hypothalamus, without changing the expression of other inflammation-associated genes. Furthermore, hypothalamic and hindbrain interleukin-associated intracellular signals [phosphorylated signal transducer and activator of transcription-3 (pSTAT3) and suppressor of cytokine signaling-1 (SOCS1)] were also elevated by exendin-4. Pharmacologic disruption of CNS IL-1 receptor or IL-6 biological activity attenuated anorexia and body weight loss induced by central exendin-4 administration in a rat. Simultaneous blockade of IL-1 and IL-6 activity led to a more potent attenuation of exendin-4 effects on food intake. Mice with global IL-1 receptor gene knockout or central IL-6 receptor knockdown showed attenuated decrease in food intake and body weight in response to peripheral exendin-4 treatment. GLP-1 receptor activation in the mouse neuronal Neuro2A cell line also resulted in increased IL-6 expression. These data outline a previously unidentified role of the central IL-1 and IL-6 in mediating the anorexic and body weight loss effects of GLP-1 receptor activation.


Assuntos
Regulação do Apetite/fisiologia , Peso Corporal/fisiologia , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Obesidade/metabolismo , Receptores de Glucagon/metabolismo , Análise de Variância , Animais , Western Blotting , Técnicas de Silenciamento de Genes , Receptor do Peptídeo Semelhante ao Glucagon 1 , Masculino , Camundongos , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Receptores de Interleucina-1/genética
2.
J Lipid Res ; 55(1): 41-52, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24186947

RESUMO

The liver is a major organ in whole body lipid metabolism and malfunctioning can lead to various diseases including dyslipidemia, fatty liver disease, and type 2 diabetes. Triglycerides and cholesteryl esters are packed in the liver as very low density lipoproteins (VLDLs). Generation of these lipoproteins is initiated in the endoplasmic reticulum and further maturation likely occurs in the Golgi. ADP-ribosylation factor-related protein 1 (ARFRP1) is a small trans-Golgi-associated guanosine triphosphatase (GTPase) that regulates protein sorting and is required for chylomicron lipidation and assembly in the intestine. Here we show that the hepatocyte-specific deletion of Arfrp1 (Arfrp1(liv-/-)) results in impaired VLDL lipidation leading to reduced plasma triglyceride levels in the fasted state as well as after inhibition of lipoprotein lipase activity by Triton WR-1339. In addition, the concentration of ApoC3 that comprises 40% of protein mass of secreted VLDLs is markedly reduced in the plasma of Arfrp1(liv-/-) mice but accumulates in the liver accompanied by elevated triglycerides. Fractionation of Arfrp1(liv-/-) liver homogenates reveals more ApoB48 and a lower concentration of triglycerides in the Golgi compartments than in the corresponding fractions from control livers. In conclusion, ARFRP1 and the Golgi apparatus play an important role in lipoprotein maturation in the liver by influencing lipidation and assembly of proteins to the lipid particles.


Assuntos
Fatores de Ribosilação do ADP/fisiologia , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Processamento de Proteína Pós-Traducional , Rede trans-Golgi/enzimologia , Rede trans-Golgi/metabolismo , Animais , Apolipoproteína A-I/metabolismo , Retículo Endoplasmático , Lipogênese , Lipoproteínas HDL/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Triglicerídeos/metabolismo
3.
Hum Mol Genet ; 21(14): 3128-42, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22505585

RESUMO

The uptake and processing of dietary lipids by the small intestine is a multistep process that involves several steps including vesicular and protein transport. The GTPase ADP-ribosylation factor-related protein 1 (ARFRP1) controls the ARF-like 1 (ARL1)-mediated Golgi recruitment of GRIP domain proteins which in turn bind several Rab-GTPases. Here, we describe the essential role of ARFRP1 and its interaction with Rab2 in the assembly and lipidation of chylomicrons in the intestinal epithelium. Mice lacking Arfrp1 specifically in the intestine (Arfrp1(vil-/-)) exhibit an early post-natal growth retardation with reduced plasma triacylglycerol and free fatty acid concentrations. Arfrp1(vil-/-) enterocytes as well as Arfrp1 mRNA depleted Caco-2 cells absorbed fatty acids normally but secreted chylomicrons with a markedly reduced triacylglycerol content. In addition, the release of apolipoprotein A-I (ApoA-I) was dramatically decreased, and ApoA-I accumulated in the Arfrp1(vil-/-) epithelium, where it predominantly co-localized with Rab2. The release of chylomicrons from Caco-2 was markedly reduced after the suppression of Rab2, ARL1 and Golgin-245. Thus, the GTPase ARFRP1 and its downstream proteins are required for the lipidation of chylo-microns and the assembly of ApoA-I to these particles in the Golgi of intestinal epithelial cells.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Quilomícrons/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Complexo de Golgi/enzimologia , Mucosa Intestinal/enzimologia , Fatores de Ribosilação do ADP/genética , Animais , Apolipoproteína A-I/metabolismo , GTP Fosfo-Hidrolases/genética , Complexo de Golgi/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos , Camundongos , Camundongos Knockout , Ligação Proteica , Transporte Proteico , Proteína rab2 de Ligação ao GTP/genética , Proteína rab2 de Ligação ao GTP/metabolismo
4.
Biochem Biophys Res Commun ; 394(4): 896-903, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20230794

RESUMO

The GTPase ADP-ribosylation factor related protein 1 (ARFRP1) controls the recruitment of proteins such as golgin-245 to the trans-Golgi. ARFRP1 is highly expressed in adipose tissues in which the insulin-sensitive glucose transporter GLUT4 is processed through the Golgi to a specialized endosomal compartment, the insulin-responsive storage compartment from which it is translocated to the plasma membrane in response to a stimulation of cells by insulin. In order to examine the role of ARFRP1 for GLUT4 targeting, subcellular distribution of GLUT4 was investigated in adipose tissue specific Arfrp1 knockout (Arfrp1(ad)(-/-)) mice. Immunohistochemical and ultrastructural studies of brown adipocytes demonstrated an abnormal trans-Golgi in Arfrp1(ad)(-/-) adipocytes. In addition, in Arfrp1(ad)(-/-) adipocytes GLUT4 protein accumulated at the plasma membrane rather than being sequestered in an intracellular compartment. A similar missorting of GLUT4 was produced by siRNA-mediated knockdown of Arfrp1 in 3T3-L1 adipocytes which was associated with significantly elevated uptake of deoxyglucose under basal conditions. Thus, Arfrp1 appears to be involved in sorting of GLUT4.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Adipócitos Marrons/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Rede trans-Golgi/metabolismo , Células 3T3-L1 , Fatores de Ribosilação do ADP/genética , Adipócitos Marrons/ultraestrutura , Animais , Técnicas de Silenciamento de Genes , Camundongos , Transporte Proteico , Rede trans-Golgi/ultraestrutura
5.
Biosci Rep ; 33(1): 1-9, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23033902

RESUMO

LDs (lipid droplets) carrying TAG (triacylglycerol) and cholesteryl esters are emerging as dynamic cellular organelles that are generated in nearly every cell. They play a key role in lipid and membrane homoeostasis. Abnormal LD dynamics are associated with the pathophysiology of many metabolic diseases, such as obesity, diabetes, atherosclerosis, fatty liver and even cancer. Chylomicrons, stable droplets also consisting of TAG and cholesterol are generated in the intestinal epithelium to transport exogenous (dietary) lipids after meals from the small intestine to tissues for degradation. Defective chylomicron formation is responsible for inherited lipoprotein deficiencies, including abetalipoproteinaemia, hypobetalipoproteinaemia and chylomicron retention disease. These are disorders sharing characteristics such as fat malabsorption, low levels of circulating lipids and fat-soluble vitamins, failure to thrive in early childhood, ataxic neuropathy and visual impairment. Thus understanding the molecular mechanisms governing the dynamics of LDs and chylomicrons, namely, their biogenesis, growth, maintenance and degradation, will not only clarify their molecular role, but might also provide additional indications to treatment of metabolic diseases. In this review, we highlight the role of two small GTPases [ARFRP1 (ADP-ribosylation factor related protein 1) and ARL1 (ADP-ribosylation factor-like 1)] and their downstream targets acting on the trans-Golgi (Golgins and Rab proteins) on LD and chylomicron formation.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Quilomícrons/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Ribosilação do ADP/genética , Adipócitos/enzimologia , Adipócitos/metabolismo , Animais , Autoantígenos/metabolismo , Transporte Biológico , Retículo Endoplasmático/metabolismo , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi , Humanos , Metabolismo dos Lipídeos , Transtornos do Metabolismo dos Lipídeos/enzimologia , Transtornos do Metabolismo dos Lipídeos/metabolismo , Lipólise , Proteínas de Membrana/genética , Camundongos , Mapeamento de Interação de Proteínas
6.
Mol Cell Biol ; 32(21): 4363-74, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22927645

RESUMO

The GTPase ADP-ribosylation factor-related protein 1 (ARFRP1) is located at the trans-Golgi compartment and regulates the recruitment of Arf-like 1 (ARL1) and its effector golgin-245 to this compartment. Here, we show that liver-specific knockout of Arfrp1 in the mouse (Arfrp1(liv-/-)) resulted in early growth retardation, which was associated with reduced hepatic insulin-like growth factor 1 (IGF1) secretion. Accordingly, suppression of Arfrp1 in primary hepatocytes resulted in a significant reduction of IGF1 release. However, the hepatic secretion of IGF-binding protein 2 (IGFBP2) was not affected in the absence of ARFRP1. In addition, Arfrp1(liv-/-) mice exhibited decreased glucose transport into the liver, leading to a 50% reduction of glycogen stores as well as a marked retardation of glycogen storage after fasting and refeeding. These abnormalities in glucose metabolism were attributable to reduced protein levels and intracellular retention of the glucose transporter GLUT2 in Arfrp1(liv-/-) livers. As a consequence of impaired glucose uptake into the liver, the expression levels of carbohydrate response element binding protein (ChREBP), a transcription factor regulated by glucose concentration, and its target genes (glucokinase and pyruvate kinase) were markedly reduced. Our data indicate that ARFRP1 in the liver is involved in the regulation of IGF1 secretion and GLUT2 sorting and is thereby essential for normal growth and glycogen storage.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Glicogênio Hepático/metabolismo , Fígado/metabolismo , Fatores de Ribosilação do ADP/deficiência , Fatores de Ribosilação do ADP/genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Metabolismo dos Carboidratos , Proliferação de Células , Células Cultivadas , Glucose/metabolismo , Complexo de Golgi/metabolismo , Hepatócitos/metabolismo , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/biossíntese , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Nucleares/biossíntese , Interferência de RNA , RNA Interferente Pequeno , Fatores de Transcrição/biossíntese
7.
Diabetes ; 61(1): 187-96, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22124465

RESUMO

To clarify the physiological role of Na(+)-D-glucose cotransporter SGLT1 in small intestine and kidney, Sglt1(-/-) mice were generated and characterized phenotypically. After gavage of d-glucose, small intestinal glucose absorption across the brush-border membrane (BBM) via SGLT1 and GLUT2 were analyzed. Glucose-induced secretion of insulinotropic hormone (GIP) and glucagon-like peptide 1 (GLP-1) in wild-type and Sglt1(-/-) mice were compared. The impact of SGLT1 on renal glucose handling was investigated by micropuncture studies. It was observed that Sglt1(-/-) mice developed a glucose-galactose malabsorption syndrome but thrive normally when fed a glucose-galactose-free diet. In wild-type mice, passage of D-glucose across the intestinal BBM was predominantly mediated by SGLT1, independent the glucose load. High glucose concentrations increased the amounts of SGLT1 and GLUT2 in the BBM, and SGLT1 was required for upregulation of GLUT2. SGLT1 was located in luminal membranes of cells immunopositive for GIP and GLP-1, and Sglt1(-/-) mice exhibited reduced glucose-triggered GIP and GLP-1 levels. In the kidney, SGLT1 reabsorbed ∼3% of the filtered glucose under normoglycemic conditions. The data indicate that SGLT1 is 1) pivotal for intestinal mass absorption of d-glucose, 2) triggers the glucose-induced secretion of GIP and GLP-1, and 3) triggers the upregulation of GLUT2.


Assuntos
Glucose/farmacocinética , Incretinas/metabolismo , Absorção Intestinal/genética , Transportador 1 de Glucose-Sódio/fisiologia , Animais , Feminino , Glucose/farmacologia , Glicosúria/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Intestino Delgado/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo
8.
Mol Cell Biol ; 30(5): 1231-42, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20038528

RESUMO

ADP-ribosylation factor (ARF)-related protein 1 (ARFRP1) is a GTPase regulating protein trafficking between intracellular organelles. Here we show that mice lacking Arfrp1 in adipocytes (Arfrp1(ad-/-)) are lipodystrophic due to a defective lipid droplet formation in adipose cells. Ratios of mono-, di-, and triacylglycerol, as well as the fatty acid composition of triglycerides, were unaltered. Lipid droplets of brown adipocytes of Arfrp1(ad-/-) mice were considerably smaller and exhibited ultrastructural alterations, such as a disturbed interaction of small lipid-loaded particles with the larger droplets, suggesting that ARFRP1 mediates the transfer of newly formed small lipid particles to the large storage droplets. SNAP23 (synaptosomal-associated protein of 23 kDa) associated with small lipid droplets of control adipocytes but was located predominantly in the cytosol of Arfrp1(ad-/-) adipocytes, suggesting that lipid droplet growth is defective in Arfrp1(ad-/-) mice. In addition, levels of phosphorylated hormone-sensitive lipase (HSL) were elevated, and association of adipocyte triglyceride lipase (ATGL) with lipid droplets was enhanced in brown adipose tissue from Arfrp1(ad-/-) mice. Accordingly, basal lipolysis was increased after knockdown of Arfrp1 in 3T3-L1 adipocytes. The data indicate that disruption of ARFRP1 prevents the normal enlargement of lipid droplets and produces an activation of lipolysis.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Metabolismo dos Lipídeos , Lipólise/fisiologia , Células 3T3-L1 , Fatores de Ribosilação do ADP/antagonistas & inibidores , Fatores de Ribosilação do ADP/deficiência , Fatores de Ribosilação do ADP/genética , Adipócitos Marrons/metabolismo , Adipócitos Marrons/ultraestrutura , Adiponectina/sangue , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Sequência de Bases , Primers do DNA/genética , Feminino , Leptina/sangue , Lipodistrofia/etiologia , Lipodistrofia/metabolismo , Lipodistrofia/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Fenótipo , Gravidez , RNA Interferente Pequeno/genética , Esterol Esterase/metabolismo
9.
J Biol Chem ; 283(40): 27179-88, 2008 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-18662990

RESUMO

ADP-ribosylation factor-related protein 1 (ARFRP1) plays a specific role in Golgi function controlling recruitment of GRIP domain proteins and ARL1 to the trans-Golgi. Deletion of the mouse Arfrp1 gene causes embryonic lethality during early gastrulation, because epiblast cells detach from the ectodermal cell layer and do not differentiate to mesodermal tissue. Here we show that in Arfrp1(-/-) embryos E-cadherin is mistargeted to intracellular compartments, whereas in control embryos it is present at the cell surface of trophectodermal and ectodermal cells. In enterocytes of intestine-specific Arfrp1 null mutants (Arfrp1(vil)(-/-)), E-cadherin is associated with intracellular membranes, partially colocalizing with the cis-Golgi marker GM130 or with punctae close to the cell surface. In contrast, in control enterocytes E-cadherin is exclusively located in the lateral membranes. In addition, ARL1 is dislocated from Golgi membranes to the cytosol of Arfrp1(vil)(-/-) enterocytes. Depletion of endogenous ARFRP1 by RNA interference leads to a dislocation of E-cadherin from the cell surface in HeLa cells and to a reduced cell aggregation in Ltk(-)Ecad cells. ARFRP1 was coimmunoprecipitated in a complex with E-cadherin, alpha-catenin, beta-catenin, gamma-catenin, and p120(ctn) from lysates of Madin-Darby canine kidney cells stably expressing myc-ARFRP1. These data indicate that knock-out of Arfrp1 disrupts the trafficking of E-cadherin through the Golgi and suggest an essential role of the GTPase in trans-Golgi network function.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Caderinas/metabolismo , Membrana Celular/metabolismo , Complexo de Golgi/metabolismo , Fatores de Ribosilação do ADP/genética , Animais , Caderinas/genética , Cateninas/genética , Cateninas/metabolismo , Diferenciação Celular/fisiologia , Membrana Celular/genética , Cães , Ectoderma/metabolismo , Perda do Embrião/genética , Perda do Embrião/metabolismo , Enterócitos/metabolismo , Complexo de Golgi/genética , Células HeLa , Humanos , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Transporte Proteico/fisiologia , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa