Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Plant Cell Environ ; 47(8): 2865-2878, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38616528

RESUMO

A trade-off between growth and defence against biotic stresses is common in plants. Fungal endophytes of the genus Epichloë may relieve this trade-off in their host grasses since they can simultaneously induce plant growth and produce antiherbivore alkaloids that circumvent the need for host defence. The Epichloë ability to decouple the growth-defence trade-off was evaluated by subjecting ryegrass with and without Epichloë endophytes to an exogenous treatment with gibberellin (GA) followed by a challenge with Rhopalosiphum padi aphids. In agreement with the endophyte-mediated trade-off decoupling hypothesis, the GA-derived promotion of plant growth increased the susceptibility to aphids in endophyte-free plants but did not affect the insect resistance in endophyte-symbiotic plants. In line with the unaltered insect resistance, the GA treatment did not reduce the concentration of Epichloë-derived alkaloids. The Epichloë mycelial biomass was transiently increased by the GA treatment but at the expense of hyphal integrity. The response of the phyllosphere bacterial microbiota to both GA treatment and Epichloë was also evaluated. Only Epichloë, and not the GA treatment, altered the composition of the phyllosphere microbiota and the abundance of certain bacterial taxa. Our findings clearly demonstrate that Epichloë does indeed relieve the plant growth-defence trade-off.


Assuntos
Endófitos , Epichloe , Giberelinas , Herbivoria , Lolium , Microbiota , Simbiose , Endófitos/fisiologia , Animais , Epichloe/fisiologia , Lolium/microbiologia , Lolium/crescimento & desenvolvimento , Lolium/fisiologia , Giberelinas/metabolismo , Afídeos/fisiologia , Bactérias , Alcaloides/metabolismo , Defesa das Plantas contra Herbivoria
2.
BMC Genomics ; 22(1): 686, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34548019

RESUMO

BACKGROUND: Soil bacteria are a major source of specialized metabolites including antimicrobial compounds. Yet, one of the most diverse genera of bacteria ubiquitously present in soil, Clostridium, has been largely overlooked in bioactive compound discovery. As Clostridium spp. thrive in extreme environments with their metabolic mechanisms adapted to the harsh conditions, they are likely to synthesize molecules with unknown structures, properties, and functions. Therefore, their potential to synthesize small molecules with biological activities should be of great interest in the search for novel antimicrobial compounds. The current study focused on investigating the antimicrobial potential of four soil Clostridium isolates, FS01, FS2.2 FS03, and FS04, using a genome-led approach, validated by culture-based methods. RESULTS: Conditioned/spent media from all four Clostridium isolates showed varying levels of antimicrobial activity against indicator microorganism; all four isolates significantly inhibited the growth of Pseudomonas aeruginosa. FS01, FS2.2, and FS04 were active against Bacillus mycoides and FS03 reduced the growth of Bacillus cereus. Phylogenetic analysis together with DNA-DNA hybridization (dDDH), average nucleotide identity (ANI), and functional genome distribution (FGD) analyses confirmed that FS01, FS2.2, and FS04 belong to the species Paraclostridium bifermentans, Clostridium cadaveris, and Clostridium senegalense respectively, while FS03 may represent a novel species of the genus Clostridium. Bioinformatics analysis using antiSMASH 5.0 predicted the presence of eight biosynthetic gene clusters (BGCs) encoding for the synthesis of ribosomally synthesized post-translationally modified peptides (RiPPs) and non-ribosomal peptides (NRPs) in four genomes. All predicted BGCs showed no similarity with any known BGCs suggesting novelty of the molecules from those predicted gene clusters. In addition, the analysis of genomes for putative virulence factors revealed the presence of four putative Clostridium toxin related genes in FS01 and FS2.2 genomes. No genes associated with the main Clostridium toxins were identified in the FS03 and FS04 genomes. CONCLUSIONS: The presence of BGCs encoding for uncharacterized RiPPs and NRPSs in the genomes of antagonistic Clostridium spp. isolated from farm soil indicated their potential to produce novel secondary metabolites. This study serves as a basis for the identification and characterization of potent antimicrobials from these soil Clostridium spp. and expands the current knowledge base, encouraging future research into bioactive compound production in members of the genus Clostridium.


Assuntos
Anti-Infecciosos , Solo , Bacillus , Clostridium/genética , Filogenia
3.
Appl Microbiol Biotechnol ; 104(4): 1809-1820, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31867694

RESUMO

Constructed wetlands (CWs) are effective ecological remediation technologies for various contaminated water bodies. Here, we queried for benzene-degrading microbes in a horizontal subsurface flow CW with reducing conditions in the pore water and fed with benzene-contaminated groundwater. For identification of relevant microbes, we employed in situ microcosms (BACTRAPs, which are made from granulated activated carbon) coupled with 13C-stable isotope probing and Illumina sequencing of 16S rRNA amplicons. A significant incorporation of 13C was detected in RNA isolated from BACTRAPs loaded with 13C-benzene and exposed in the CW for 28 days. A shorter incubation time did not result in detectable 13C incorporation. After 28 days, members from four genera, namely Dechloromonas, Hydrogenophaga, and Zoogloea from the Betaproteobacteria and Arcobacter from the Epsilonproteobacteria were significantly labeled with 13C and were abundant in the bacterial community on the BACTRAPs. Sequences affiliated to Geobacter were also numerous on the BACTRAPs but apparently those microbes did not metabolize benzene as no 13C label incorporation was detected. Instead, they may have metabolized plant-derived organic compounds while using the BACTRAPs as electron sink. In representative wetland samples, sequences affiliated with Dechloromonas, Zoogloea, and Hydrogenophaga were present at relative proportions of up to a few percent. Sequences affiliated with Arcobacter were present at < 0.01% in wetland samples. In conclusion, we identified microbes of likely significance for benzene degradation in a CW used for remediation of contaminated water.


Assuntos
Benzeno/metabolismo , Proteobactérias/classificação , Proteobactérias/metabolismo , Áreas Alagadas , Isótopos de Carbono , Proteobactérias/isolamento & purificação , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
4.
Immunol Cell Biol ; 97(1): 39-53, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30152893

RESUMO

Antibody-mediated immunity is highly protective against disease. The majority of current vaccines confer protection through humoral immunity, but there is high variability in responsiveness across populations. Identifying immune mechanisms that mediate low antibody responsiveness may provide potential strategies to boost vaccine efficacy. Here, we report diverse antibody responsiveness to unadjuvanted as well as adjuvanted immunization in substrains of BALB/c mice, resulting in high and low antibody response phenotypes. Furthermore, these antibody phenotypes were not affected by changes in environmental factors such as the gut microbiota composition. Antigen-specific B cells following immunization had a marked difference in capability to class switch, resulting in perturbed IgG isotype antibody production. In vitro, a B-cell intrinsic defect in the regulation of class-switch recombination was identified in mice with low IgG antibody production. Whole genome sequencing identified polymorphisms associated with the magnitude of antibody produced, and we propose candidate genes that may regulate isotype class-switching capability. This study highlights that mice sourced from different vendors can have significantly altered humoral immune response profiles, and provides a resource to interrogate genetic regulators of antibody responsiveness. Together these results further our understanding of immune heterogeneity and suggest additional research on the genetic influences of adjuvanted vaccine strategies is warranted for enhancing vaccine efficacy.


Assuntos
Formação de Anticorpos/genética , Camundongos Endogâmicos BALB C , Animais , Linfócitos B/imunologia , Switching de Imunoglobulina , Camundongos , Camundongos Endogâmicos BALB C/genética , Camundongos Endogâmicos BALB C/imunologia , Polimorfismo Genético/genética , Vacinas/imunologia , Sequenciamento Completo do Genoma
5.
Environ Microbiol ; 20(6): 2160-2177, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29687552

RESUMO

The evolutional trajectory of gut microbial colonization from birth has been shown to prime for health later in life. Here, we combined cultivation-independent 16S rRNA gene sequencing and metaproteomics to investigate the functional maturation of gut microbiota in faecal samples from full-term healthy infants collected at 6 and 18 months of age. Phylogenetic analysis of the metaproteomes showed that Bifidobacterium provided the highest number of distinct protein groups. Considerable divergences between taxa abundance and protein phylogeny were observed at all taxonomic ranks. Age had a profound effect on early microbiota where compositional and functional diversity of less dissimilar communities increased with time. Comparisons of the relative abundances of proteins revealed the transition of taxon-associated saccharolytic and fermentation strategies from milk and mucin-derived monosaccharide catabolism feeding acetate/propanoate synthesis to complex food-derived hexoses fuelling butanoate production. Furthermore, co-occurrence network analysis uncovered two anti-correlated modules of functional taxa. A low-connected Bifidobacteriaceae-centred guild of facultative anaerobes was succeeded by a rich club of obligate anaerobes densely interconnected around Lachnospiraceae, underpinning their pivotal roles in microbial ecosystem assemblies. Our findings establish a framework to visualize whole microbial community metabolism and ecosystem succession dynamics, proposing opportunities for microbiota-targeted health-promoting strategies early in life.


Assuntos
Microbioma Gastrointestinal/fisiologia , Microbiota/genética , Microbiota/fisiologia , Animais , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bifidobacterium/genética , Metabolismo dos Carboidratos , Fezes/microbiologia , Fermentação , Humanos , Lactente , Recém-Nascido , Filogenia , Proteômica , RNA Ribossômico 16S/genética
6.
Environ Microbiol ; 19(4): 1536-1551, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28251782

RESUMO

Recent evidence has disclosed a connection between gut microbial glycosidase activity and adiposity in obese. Here, we measured microbial α-glucosidase and ß-galactosidase activities and sorted fluorescently labeled ß-galactosidase containing (ßGAL) microorganisms in faecal samples of eight lean and thirteen obese adolescents that followed a controlled calorie restriction program during one year. ß-galactosidase is a highly distributed functional trait, mainly expressed by members of Blautia, Bacteroides, Alcaligenes, Acinetobacter and Propionibacterium. Only long-term calorie restriction induced clear changes in the microbiota of obese adolescents. Long-term calorie restriction induced significant shifts in total and ßGAL gut microbiota, reducing the Firmicutes:Bacteroidetes ratio and enhancing the growth of beneficial microorganisms such as Bacteroides, Roseburia, Faecalibacterium and Clostridium XIVa. Moreover, the structure and composition of ßGAL community in obese after long-term calorie restriction was highly similar to that of lean adolescents. However, despite this high compositional similarity, microbial metabolic performance was different, split in two metabolic states at a body mass index value of 25. Our study shows that calorie restriction is a strong environmental force reshaping gut microbiota though its metabolic performance is linked to host's adiposity, suggesting that functional redundancy and metabolic plasticity are fundamental properties of gut microbial ecosystem.


Assuntos
Restrição Calórica , Microbioma Gastrointestinal , Obesidade/microbiologia , Adolescente , Bacteroides , Bacteroidetes , Clostridium , Fezes/microbiologia , Humanos
7.
Environ Microbiol ; 19(8): 2992-3011, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28401633

RESUMO

A culture-independent function-based screening approach was used to assess the microbial aerobic catabolome for polycyclic aromatic hydrocarbons degradation of a soil subjected to 12 years of in situ bioremediation. A total of 422 750 fosmid clones were screened for key aromatic ring-cleavage activities using 2,3-dihydroxybiphenyl as substrate. Most of the genes encoding ring-cleavage enzymes on the 768 retrieved positive fosmids could not be identified using primer-based approaches and, thus, 205 fosmid inserts were sequenced. Nearly two hundred extradiol dioxygenase encoding genes of three different superfamilies could be identified. Additional key genes of aromatic metabolic pathways were identified, including a high abundance of Rieske non-heme iron oxygenases that provided detailed information on enzymes activating aromatic compounds and enzymes involved in activation of the side chain of methylsubstituted aromatics. The gained insights indicated a complex microbial network acting at the site under study, which comprises organisms similar to recently identified Immundisolibacter cernigliae TR3.2 and Rugosibacter aromaticivorans Ca6 and underlined the great potential of an approach that combines an activity-screening, a cost-effective high-throughput sequencing of fosmid clones and a phylogenomic-routed and manually curated database to carefully identify key proteins dedicated to aerobic degradation of aromatic compounds.


Assuntos
Biodegradação Ambiental , Gammaproteobacteria/isolamento & purificação , Gammaproteobacteria/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Rhodocyclaceae/isolamento & purificação , Rhodocyclaceae/metabolismo , Sequência de Bases , Compostos de Bifenilo/química , Catecóis/química , DNA Bacteriano/genética , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica/métodos , Oxigenases/genética , Filogenia , Rhodocyclaceae/classificação , Rhodocyclaceae/genética , Solo , Microbiologia do Solo
8.
Environ Microbiol ; 19(2): 722-739, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27883264

RESUMO

Polyunsaturated fatty acids (PUFAs) may affect colon microbiome homeostasis by exerting (specific) antimicrobial effects and/or interfering with mucosal biofilm formation at the gut mucosal interface. We used standardized batch incubations and the Mucosal-Simulator of the Human Microbial Intestinal Ecosystem (M-SHIME) to show the in vitro luminal and mucosal effects of the main PUFA in the Western diet, linoleic acid (LA). High concentrations of LA were found to decrease butyrate production and Faecalibacterium prausnitzii numbers dependent on LA biohydrogenation to vaccenic acid (VA) and stearic acid (SA). In faecal batch incubations, LA biohydrogenation and butyrate production were positively correlated and SA did not inhibit butyrate production. In the M-SHIME, addition of a mucosal environment stimulated biohydrogenation to SA and protected F. prausnitzii from inhibition by LA. This was probably due to the preference of two biohydrogenating genera Roseburia and Pseudobutyrivibrio for the mucosal niche. Co-culture batch incubations using Roseburia hominis and F. prausnitzii validated these observations. Correlations networks further uncovered the central role of Roseburia and Pseudobutyrivibrio in protecting luminal and mucosal SHIME microbiota from LA-induced stress. Our results confirm how cross-shielding interactions provide resilience to the microbiome and demonstrate the importance of biohydrogenating, mucosal bacteria for recovery from LA stress.


Assuntos
Bactérias/isolamento & purificação , Colo/microbiologia , Ácidos Graxos Insaturados/metabolismo , Microbioma Gastrointestinal , Mucosa Intestinal/microbiologia , Adulto , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Butiratos/metabolismo , Colo/fisiologia , Fezes/microbiologia , Feminino , Humanos , Ácido Linoleico/metabolismo , Microbiota/efeitos dos fármacos , Ácidos Esteáricos/metabolismo , Adulto Jovem
9.
Mol Cell Proteomics ; 14(4): 989-1008, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25673765

RESUMO

Long-term catheterization inevitably leads to a catheter-associated bacteriuria caused by multispecies bacterial biofilms growing on and in the catheters. The overall goal of the presented study was (1) to unravel bacterial community structure and function of such a uropathogenic biofilm and (2) to elucidate the interplay between bacterial virulence and the human immune system within the urine. To this end, a metaproteomics approach combined with in vitro proteomics analyses was employed to investigate both, the pro- and eukaryotic protein inventory. Our proteome analyses demonstrated that the biofilm of the investigated catheter is dominated by three bacterial species, that is, Pseudomonas aeruginosa, Morganella morganii, and Bacteroides sp., and identified iron limitation as one of the major challenges in the bladder environment. In vitro proteome analysis of P. aeruginosa and M. morganii isolated from the biofilm revealed that these opportunistic pathogens are able to overcome iron restriction via the production of siderophores and high expression of corresponding receptors. Notably, a comparison of in vivo and in vitro protein profiles of P. aeruginosa and M. morganii also indicated that the bacteria employ different strategies to adapt to the urinary tract. Although P. aeruginosa seems to express secreted and surface-exposed proteases to escape the human innate immune system and metabolizes amino acids, M. morganii is able to take up sugars and to degrade urea. Most interestingly, a comparison of urine protein profiles of three long-term catheterized patients and three healthy control persons demonstrated the elevated level of proteins associated with neutrophils, macrophages, and the complement system in the patient's urine, which might point to a specific activation of the innate immune system in response to biofilm-associated urinary tract infections. We thus hypothesize that the often asymptomatic nature of catheter-associated urinary tract infections might be based on a fine-tuned balance between the expression of bacterial virulence factors and the human immune system.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções Relacionadas a Cateter/metabolismo , Infecções Relacionadas a Cateter/microbiologia , Interações Hospedeiro-Patógeno , Proteômica/métodos , Infecções Urinárias/metabolismo , Infecções Urinárias/microbiologia , Adaptação Fisiológica , Biofilmes , Infecções Relacionadas a Cateter/urina , Sistema Livre de Células , Humanos , Imunidade Inata , Morganella morganii/isolamento & purificação , Morganella morganii/metabolismo , Fenótipo , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/metabolismo , Especificidade da Espécie , Sistema Urinário/microbiologia , Sistema Urinário/patologia , Infecções Urinárias/urina , Urina/microbiologia
10.
Environ Microbiol ; 18(7): 2259-71, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27207744

RESUMO

The human nasal passage, from the anterior nares through the nasal vestibule to the nasal cavities, is an important habitat for opportunistic pathogens and commensals alike. This work sampled four different anatomical regions within the human nasal passage across a large cohort of individuals (n = 79) comprising individuals suffering from chronic nasal inflammation clinically known as chronic rhinosinusitis (CRS) and individuals not suffering from inflammation (CRS-free). While individuals had their own unique bacterial fingerprint that was consistent across the anatomical regions, these bacterial fingerprints formed into distinct delineated groups comprising core bacterial members, which were consistent across all four swabbed anatomical regions irrespective of health status. The most significant observed pattern was the difference between the global bacterial profiles of swabbed and tissue biopsy samples from the same individuals, being also consistent across different anatomical regions. Importantly, no statistically significant differences could be observed concerning the global bacterial communities, any of the bacterial species or the range of diversity indices used to compare between CRS and CRS-free individuals, and between two CRS phenotypes (without nasal polyps and with nasal polyps). Thus, the role of bacteria in the pathogenesis of sinusitis remains uncertain.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Microbiota , Cavidade Nasal/microbiologia , Rinite/microbiologia , Sinusite/microbiologia , Adulto , Idoso , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Doença Crônica , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cavidade Nasal/imunologia , Rinite/imunologia , Sinusite/imunologia , Adulto Jovem
11.
Appl Environ Microbiol ; 82(1): 167-73, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26475106

RESUMO

Pseudomonas veronii 1YdBTEX2, a benzene and toluene degrader, and Pseudomonas veronii 1YB2, a benzene degrader, have previously been shown to be key players in a benzene-contaminated site. These strains harbor unique catabolic pathways for the degradation of benzene comprising a gene cluster encoding an isopropylbenzene dioxygenase where genes encoding downstream enzymes were interrupted by stop codons. Extradiol dioxygenases were recruited from gene clusters comprising genes encoding a 2-hydroxymuconic semialdehyde dehydrogenase necessary for benzene degradation but typically absent from isopropylbenzene dioxygenase-encoding gene clusters. The benzene dihydrodiol dehydrogenase-encoding gene was not clustered with any other aromatic degradation genes, and the encoded protein was only distantly related to dehydrogenases of aromatic degradation pathways. The involvement of the different gene clusters in the degradation pathways was suggested by real-time quantitative reverse transcription PCR.


Assuntos
Proteínas de Bactérias/metabolismo , Benzeno/metabolismo , Família Multigênica , Pseudomonas/enzimologia , Pseudomonas/genética , Proteínas de Bactérias/genética , Biocatálise , Biodegradação Ambiental , Dioxigenases/genética , Dioxigenases/metabolismo , Dados de Sequência Molecular , Oxigenases/genética , Oxigenases/metabolismo , Filogenia , Pseudomonas/metabolismo
12.
Appl Environ Microbiol ; 82(7): 2227-2237, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26850298

RESUMO

Three types of contaminated soil from three geographically different areas were subjected to a constant supply of benzene or benzene/toluene/ethylbenzene/xylenes (BTEX) for a period of 3 months. Different from the soil from Brazil (BRA) and Switzerland (SUI), the Czech Republic (CZE) soil which was previously subjected to intensive in situ bioremediation displayed only negligible changes in community structure. BRA and SUI soil samples showed a clear succession of phylotypes. A rapid response to benzene stress was observed, whereas the response to BTEX pollution was significantly slower. After extended incubation, actinobacterial phylotypes increased in relative abundance, indicating their superior fitness to pollution stress. Commonalities but also differences in the phylotypes were observed. Catabolic gene surveys confirmed the enrichment of actinobacteria by identifying the increase of actinobacterial genes involved in the degradation of pollutants. Proteobacterial phylotypes increased in relative abundance in SUI microcosms after short-term stress with benzene, and catabolic gene surveys indicated enriched metabolic routes. Interestingly, CZE soil, despite staying constant in community structure, showed a change in the catabolic gene structure. This indicates that a highly adapted community, which had to adjust its gene pool to meet novel challenges, has been enriched.


Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Microbiologia do Solo , Poluentes do Solo/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Benzeno/metabolismo , Derivados de Benzeno/metabolismo , Biodegradação Ambiental , Biodiversidade , Brasil , República Tcheca , Solo/química , Suíça , Tolueno/metabolismo , Xilenos/metabolismo
13.
Environ Sci Technol ; 50(12): 6467-76, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27162101

RESUMO

Acetate and ethanol can be converted to caproic acid by microorganisms through reverse ß-oxidation. There is limited insight into the versatility of chain elongation in view of different starting substrates, including even- and odd-carbon carboxylates and alcohols other than ethanol. Thermodynamic analyses show that most elongation pathways are energetically feasible. Through incubations of microbial communities with different substrate-pair combinations, we established that ethanol and propanol were both highly suitable for chain elongation. As an electron acceptor, acetate, propionate, and butyrate readily elongated with ethanol, whereas an adaptation period was necessary for formate. Isobutyrate and longer-chained fatty acids above butyrate were not elongated. The microbial communities converged, and consistent enrichment of Clostridium spp. was observed, independent of the supplied alcohol or carboxylate, with a strain related to Clostridium kluyveri dominating the enrichments. Community analysis also showed phylotypes related to Bacteroidaceae and Microbacteriaceae families in all tests that are capable of converting the base substrates to useful intermediates. These organisms were mainly enriched with methanol or formate. Our overall conclusion is thus that multiple substrates can be used for chain elongation and that this process is carried out by highly similar organisms for direct chain elongation irrespective of the substrate.


Assuntos
Etanol/química , Fermentação , Acetatos/metabolismo , Butiratos/metabolismo , Clostridium/metabolismo
14.
Clin Oral Implants Res ; 27(12): e161-e166, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25808842

RESUMO

BACKGROUND: Cementing dental restorations on implants poses the risk of undetected excess cement. Such cement remnants may favor the development of inflammation in the peri-implant tissue. The effect of excess cement on the bacterial community is not yet known. The aim of this study was to analyze the effect of two different dental cements on the composition of the microbial peri-implant community. METHODS: In a cohort of 38 patients, samples of the peri-implant tissue were taken with paper points from one implant per patient. In 15 patients, the suprastructure had been cemented with a zinc oxide-eugenol cement (Temp Bond, TB) and in 23 patients with a methacrylate cement (Premier Implant Cement, PIC). The excess cement found as well as suppuration was documented. Subgingival samples of all patients were analyzed for taxonomic composition by means of 16S amplicon sequencing. RESULTS: None of the TB-cemented implants had excess cement or suppuration. In 14 (61%) of the PIC, excess cement was found. Suppuration was detected in 33% of the PIC implants without excess cement and in 100% of the PIC implants with excess cement. The taxonomic analysis of the microbial samples revealed an accumulation of oral pathogens in the PIC patients independent of the presence of excess cement. Significantly fewer oral pathogens occurred in patients with TB compared to patients with PIC. CONCLUSION: Compared with TB, PIC favors the development of suppuration and the growth of periodontal pathogens.


Assuntos
Cimentos Dentários/química , Prótese Dentária Fixada por Implante , Peri-Implantite/microbiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Metacrilatos , Pessoa de Meia-Idade , Adulto Jovem , Cimento de Óxido de Zinco e Eugenol
15.
Appl Environ Microbiol ; 81(3): 1047-58, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25452281

RESUMO

The oral microbiome plays a key role for caries, periodontitis, and systemic diseases. A method for rapid, high-resolution, robust taxonomic profiling of subgingival bacterial communities for early detection of periodontitis biomarkers would therefore be a useful tool for individualized medicine. Here, we used Illumina sequencing of the V1-V2 and V5-V6 hypervariable regions of the 16S rRNA gene. A sample stratification pipeline was developed in a pilot study of 19 individuals, 9 of whom had been diagnosed with chronic periodontitis. Five hundred twenty-three operational taxonomic units (OTUs) were obtained from the V1-V2 region and 432 from the V5-V6 region. Key periodontal pathogens like Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia could be identified at the species level with both primer sets. Principal coordinate analysis identified two outliers that were consistently independent of the hypervariable region and method of DNA extraction used. The linear discriminant analysis (LDA) effect size algorithm (LEfSe) identified 80 OTU-level biomarkers of periodontitis and 17 of health. Health- and periodontitis-related clusters of OTUs were identified using a connectivity analysis, and the results confirmed previous studies with several thousands of samples. A machine learning algorithm was developed which was trained on all but one sample and then predicted the diagnosis of the left-out sample (jackknife method). Using a combination of the 10 best biomarkers, 15 of 17 samples were correctly diagnosed. Training the algorithm on time-resolved community profiles might provide a highly sensitive tool to detect the onset of periodontitis.


Assuntos
Bactérias/classificação , Bactérias/genética , Biomarcadores , Biota , Gengiva/microbiologia , Periodontite/diagnóstico , Periodontite/microbiologia , Doença Crônica , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Humanos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
16.
Microb Ecol ; 70(4): 922-35, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26024740

RESUMO

The long-term disposal of radioactive wastes in a deep geological repository is the accepted international solution for the treatment and management of these special residues. The microbial community of the selected host rocks and engineered barriers for the deep geological repository may affect the performance and the safety of the radioactive waste disposal. In this work, the bacterial population of bentonite formations of Almeria (Spain), selected as a reference material for bentonite-engineered barriers in the disposal of radioactive wastes, was studied. 16S ribosomal RNA (rRNA) gene-based approaches were used to study the bacterial community of the bentonite samples by traditional clone libraries and Illumina sequencing. Using both techniques, the bacterial diversity analysis revealed similar results, with phylotypes belonging to 14 different bacterial phyla: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria, Nitrospirae, Verrucomicrobia and an unknown phylum. The dominant groups of the community were represented by Proteobacteria and Bacteroidetes. A high diversity was found in three of the studied samples. However, two samples were less diverse and dominated by Betaproteobacteria.


Assuntos
Bactérias/classificação , Bentonita/análise , Resíduos Radioativos , Acessibilidade Arquitetônica , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Biodiversidade , DNA Bacteriano/genética , DNA Ribossômico/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo , Poluentes Radioativos do Solo/análise , Espanha
17.
Appl Microbiol Biotechnol ; 99(1): 189-99, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25261127

RESUMO

Anaerobic digestion is considered a key technology for the future bio-based economy. The microbial consortium carrying out the anaerobic digestion process is quite complex, and its exact role in terms of "elasticity", i.e., the ability to rapidly adapt to changing conditions, is still unknown. In this study, the role of the initial microbial community in terms of operational stability and stress tolerance was evaluated during a 175-day experiment. Five different inocula from stable industrial anaerobic digesters were fed a mixture of waste activated sludge and glycerol. Increasing ammonium pulses were applied to evaluate stability and stress tolerance. A different response in terms of start-up and ammonium tolerance was observed among the different inocula. Methanosaetaceae were the dominant acetoclastic methanogens, yet, Methanosarcinaceae increased in abundance at elevated ammonium concentrations. A shift from a Firmicutes to a Proteobacteria dominated bacterial community was observed in failing digesters. Methane production was strongly positively correlated with Methanosaetaceae, but also with Bacteria related to Anaerolinaceae, Clostridiales, and Alphaproteobacteria. Volatile fatty acids were strongly positively correlated with Betaproteobacteria and Bacteroidetes, yet ammonium concentration only with Bacteroidetes. Overall, these results indicate the importance of inoculum selection to ensure stable operation and stress tolerance in anaerobic digestion.


Assuntos
Archaea/metabolismo , Bactérias Anaeróbias/metabolismo , Biota , Metano/metabolismo , Consórcios Microbianos , Esgotos/microbiologia , Compostos de Amônio/toxicidade , Anaerobiose , Archaea/efeitos dos fármacos , Archaea/crescimento & desenvolvimento , Bactérias Anaeróbias/efeitos dos fármacos , Bactérias Anaeróbias/crescimento & desenvolvimento , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Ácidos Graxos Voláteis/metabolismo , Dados de Sequência Molecular , Análise de Sequência de DNA
18.
Environ Microbiol ; 16(9): 2939-52, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24354520

RESUMO

The anterior nares are an important reservoir for opportunistic pathogens and commensal microorganisms. A barcoded Illumina paired-end sequencing method targeting the 16S ribosomal RNA V1-2 hypervariable region was developed to compare the bacterial diversity of the anterior nares across distinct human populations (volunteers from Germany vs a Babongo Pygmy tribe, Africa). Of the 251 phylotypes detected, 231 could be classified to the genus level and 109 to the species level, including the unambiguous identification of the ubiquitous Staphylococcus aureus and Moraxella catarrhalis. The global bacterial community of both adult populations revealed that they shared 85% of the phylotypes, suggesting that our global bacterial communities have likely been with us for thousands of years. Of the 34 phylotypes unique to the non-westernized population, most were related to members within the suborder Micrococcineae. There was an even more overwelming distinction between children and adults of the same population, suggesting a progression of a childhood community of high-diversity comprising species of Moraxellaceae and Streptococcaceae to an adult community of lower diversity comprising species of Propionibacteriaceae, Clostridiales Incertae Sedis XI, Corynebacteriaceae and Staphylococcaceae. Thus, age was a stronger factor for accounting for differing bacterial assemblages than the origin of the human population sampled.


Assuntos
Bactérias/classificação , Cavidade Nasal/microbiologia , Adulto , Bactérias/genética , Criança , Estudos Transversais , Código de Barras de DNA Taxonômico , Gabão , Alemanha , Voluntários Saudáveis , Humanos , Moraxella catarrhalis/classificação , RNA Ribossômico 16S/genética , Staphylococcus aureus/classificação
19.
Microbiol Resour Announc ; 13(2): e0103923, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38132847

RESUMO

Here, we report draft genomic sequences from three Paenibacillus larvae isolates, the causative agent of American Foulbrood (AFB), obtained from honeybee colonies of Apis mellifera in Fiji, which allow both enterobacterial repetitive intergenic consensus and multilocus sequence typing genotypes to be elucidated for Fijian AFB.

20.
Microbiologyopen ; 13(2): e1404, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38515236

RESUMO

The interplay between diet and fecal microbiota composition is garnering increased interest across various host species, including domestic dogs. While the influence of dietary macronutrients and their associated microbial communities have been extensively reviewed, these reviews are descriptive and do not account for differences in microbial community analysis, nor do they standardize macronutrient content across studies. To address this, a meta-analysis was performed to assess the impact of dietary crude protein ("protein") and dietary crude fat ("fat") on the fecal microbiota composition in healthy dogs. Sixteen publications met the eligibility criteria for the meta-analysis, yielding a final data set of 314 dogs. Diets were classed as low, moderate, high, or supra in terms of protein or fat content. Sequence data from each publication were retrieved from public databases and reanalyzed using consistent bioinformatic pipelines. Analysis of community diversity indices and unsupervised clustering of the data with principal coordinate analysis revealed a small effect size and complete overlap between protein and fat levels at the overall community level. Supervised clustering through random forest analysis and partial least squares-discriminant analysis indicated alterations in the fecal microbiota composition at a more individual taxonomic level, corresponding to the levels of protein or fat. The Prevotellaceae Ga6A1 group and Enterococcus were associated with increasing levels of protein, while Allobaculum and Clostridium sensu stricto 13 were associated with increasing levels of fat. Interestingly, the random forest analyses revealed that Sharpea, despite its low relative abundance in the dog's fecal microbiome, was primarily responsible for the separation of the microbiome for both protein and fat. Future research should focus on validating and understanding the functional roles of these relatively low-abundant genera.


Assuntos
Microbiota , Lobos , Cães , Animais , Projetos Piloto , Lobos/metabolismo , Dieta/veterinária , Proteínas Alimentares/metabolismo , Fezes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa