Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 274: 116201, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489901

RESUMO

Seafood products are globally consumed, and there is an increasing demand for the quality and safety of these products among consumers. Some seafoods are easily contaminated by marine biotoxins in natural environments or cultured farming processes. When humans ingest different toxins accumulated in seafood, they may exhibit different poisoning symptoms. According to the investigations, marine toxins produced by harmful algal blooms and various other marine organisms mainly accumulate in the body organs such as liver and digestive tract of seafood animals. Several regions around the world have reported incidents of seafood poisoning by biotoxins, posing a threat to human health. Thus, most countries have legislated to specify the permissible levels of these biotoxins in seafood. Therefore, it is necessary for seafood producers and suppliers to conduct necessary testing of toxins in seafood before and after harvesting to prohibit excessive toxins containing seafood from entering the market, which therefore can reduce the occurrence of seafood poisoning incidents. In recent years, some technologies which can quickly, conveniently, and sensitively detect biological toxins in seafood, have been developed and validated, these technologies have the potential to help seafood producers, suppliers and regulatory authorities. This article reviews the seafood toxins sources and types, mechanism of action and bioaccumulation of marine toxins, as well as legislation and rapid detection technologies for biotoxins in seafood for official and fishermen supervision.


Assuntos
Doenças Transmitidas por Alimentos , Toxinas Marinhas , Animais , Humanos , Toxinas Marinhas/toxicidade , Alimentos Marinhos/análise , Bioacumulação , Doenças Transmitidas por Alimentos/epidemiologia , Proliferação Nociva de Algas
2.
Mar Drugs ; 21(3)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36976202

RESUMO

In recent years, allergic diseases have occurred frequently, affecting more than 20% of the global population. The current first-line treatment of anti-allergic drugs mainly includes topical corticosteroids, as well as adjuvant treatment of antihistamine drugs, which have adverse side effects and drug resistance after long-term use. Therefore, it is essential to find alternative anti-allergic agents from natural products. High pressure, low temperature, and low/lack of light lead to highly functionalized and diverse functional natural products in the marine environment. This review summarizes the information on anti-allergic secondary metabolites with a variety of chemical structures such as polyphenols, alkaloids, terpenoids, steroids, and peptides, obtained mainly from fungi, bacteria, macroalgae, sponges, mollusks, and fish. Molecular docking simulation is applied by MOE to further reveal the potential mechanism for some representative marine anti-allergic natural products to target the H1 receptor. This review may not only provide insight into information about the structures and anti-allergic activities of natural products from marine organisms but also provides a valuable reference for marine natural products with immunomodulatory activities.


Assuntos
Antialérgicos , Produtos Biológicos , Animais , Organismos Aquáticos/química , Antialérgicos/farmacologia , Produtos Biológicos/química , Simulação de Acoplamento Molecular , Fungos/química
3.
Chem Biodivers ; 20(8): e202300831, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37349894

RESUMO

Bacterial infected environments and resulting bacterial infections have been threatening the human health globally. Due to increased bacterial resistance caused by improper and excessive use of antibiotics, antibacterial biomaterials are being developed as alternatives to antibiotics in some cases. Herein, an advanced multifunctional hydrogel with excellent antibacterial properties, enhanced mechanical properties, biocompatibility and self-healing performance, was designed through freezing-thawing method. This hydrogel network is composed of polyvinyl alcohol (PVA), carboxymethyl chitosan (CMCS), protocatechualdehyde (PA), ferric iron (Fe) and an antimicrobial cyclic peptide actinomycin X2 (Ac.X2). The double dynamic bonds among protocatechualdehyde (PA), ferric iron (Fe) and carboxymethyl chitosan containing coordinate bond (catechol-Fe) as well as dynamic Schiff base bonds and hydrogen bonds endowed the hydrogel with enhanced mechanical properties. Successful formation of hydrogel was confirmed through ATR-IR and XRD, and structural evaluation through SEM analysis, whereas mechanical properties were tested with electromechanical universal testing machine. The resulting PVA/CMCS/Ac.X2/PA@Fe (PCXPA) hydrogel has favorable biocompatibility and excellent broad-spectrum antimicrobial activity against both S. aureus (95.3 %) and E. coli (90.2 %) compared with free-soluble Ac.X2, which exhibited subpar performance against E. coli reported in our previous studies. This work provides a new insight on preparing multifunctional hydrogels containing antimicrobial peptides as antibacterial material.


Assuntos
Anti-Infecciosos , Quitosana , Humanos , Quitosana/química , Peptídeos Cíclicos , Álcool de Polivinil/química , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Hidrogéis/farmacologia , Hidrogéis/química , Catecóis , Ferro
4.
Chem Biodivers ; 20(6): e202300445, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37148532

RESUMO

Development of suitable antimicrobial biomaterials for hygienic wound dressing and healing is an important requirement for medical application. Durable mechanical properties increase the application range of biomaterial in different environmental and biological conditions. Due to the inherent brittleness of silk fibroin (SF), polyurethane fiber (PUF) was used to modify SF containing actinomycin X2 (Ac.X2) to prepare silk fibroin@actinomycin X2 /polyurethane fiber (ASF/PUF) blend membranes. The ASF/PUF blend membrane was developed by solution casting method. Incorporation of PUF improved the flexibility of material and introduction of Ac.X2 has increased antibacterial activity of materials. Excellent mechanical properties (tensile strength up to 25.7 MPa and elongation at break up to 946.5 %) of 50 % SF+50 % PUF blend membrane were proved by tensile testing machine. FT-IR spectra, TGA, contact angle and DMA were tested to prove the blend membrane's physico-chemical characteristics. ASF/PUF blend membrane displayed satisfactory antibacterial activity against S. aureus, and the cytotoxicity tests showed that the blend membrane has better biosafety compared to directly applied Ac.X2 in soluble form. These results suggest that the modification of SF through PUF for development of flexible antibacterial membranes has great potential application value in the field of silk-like material fabrication.


Assuntos
Fibroínas , Fibroínas/farmacologia , Fibroínas/química , Poliuretanos/farmacologia , Poliuretanos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Seda/química , Materiais Biocompatíveis/química , Antibacterianos/farmacologia
5.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37047243

RESUMO

Actinomycin is a family of chromogenic lactone peptides that differ in their peptide portions of the molecule. An antimicrobial peptide, actinomycin X2 (Ac.X2), was produced through the fermentation of a Streptomyces cyaneofuscatus strain. Immobilization of Ac.X2 onto a prepared silk fibroin (SF) film was done through a carbodiimide reaction. The physical properties of immobilized Ac.X2 (antimicrobial films, AMFs) were analyzed by ATR-FTIR, SEM, AFM, and WCA. The findings from an in vitro study showed that AMFs had a more broad-spectrum antibacterial activity against both S. aureus and E. coli compared with free Ac.X2, which showed no apparent strong effect against E. coli. These AMFs showed a suitable degradation rate, good hemocompatibility, and reduced cytotoxicity in the biocompatibility assay. The results of in vivo bacterially infected wound healing experiments indicated that wound inflammation was prevented by AMFs, which promoted wound repair and improved the wound microenvironment. This study revealed that Ac.X2 transformation is a potential candidate for skin wound healing.


Assuntos
Peptídeos Antimicrobianos , Dactinomicina , Fibroínas , Proteínas Imobilizadas , Cicatrização , Dactinomicina/química , Dactinomicina/farmacologia , Fibroínas/química , Fibroínas/farmacologia , Proteínas Imobilizadas/química , Proteínas Imobilizadas/farmacologia , Cicatrização/efeitos dos fármacos , Streptomyces/metabolismo , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Microscopia de Força Atômica , Fermentação , Teste de Materiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Animais , Ratos , Masculino , Ratos Sprague-Dawley
6.
Molecules ; 27(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35565993

RESUMO

Silybum marianum L. is a therapeutic plant belonging to the family Asteraceae, which has exhibited silymarin, a principal component used to cure various physiochemical disorders. The study appraised the phytochemical analysis, antioxidant activity and chemical analysis of an extract from the seed, stem and leaves. Qualitative and quantitative phytochemical analysis was evaluated by the Folin-Ciocalteu reagent method and aluminum chloride colorimetric method, respectively. While the antioxidant activity was determined by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and acetate buffer in ferric chloride (FRAP) assay, respectively, the chemical profile was evaluated by Gas Chromatography-Mass Spectrometry (GC-MS) assay. The study outcomes identified that alkaloids, glycosides, flavonoids, terpenoids, steroids and catcholic tannins were present in seed, stem and leaves extracts except for saponins and Gallic tannins. Whereas, phenols were absent only in seed extract. Quantitative analysis revealed the presence of phenols and flavonoids in appreciable amounts of 21.79 (GAE/g), 129.66 (QE/g) and 17.29 (GAE/g), 114.29 (QE/g) from the leaves and stem extract, respectively. Similarly, all extracts expressed reasonable DPPH inhibition (IC50) and FRAP reducing power such as 75.98, 72.39 and 63.21% and 46.60, 51.40 and 41.30 mmol/g from the seeds, stem and leaves extract, respectively. Additionally, chemical analysis revealed the existence of 6, 8 and 9 chemical compounds from the seeds, stem and leaves extract, respectively, corresponding to 99.95, 99.96 and 98.89% of the whole extract. The chemical compound, Dibutyl phthalate was reported from all extracts while, Hexadecanoic acid, methyl ester and Silane, (1,1-dimethylethyl), dimethyl (phenylmethoxy) were reported only from the seed and leaves extract. Moreover, Methyl stearate was also a major compound reported from all extracts except for seed extract. It is demonstrable that extracts from different parts of S. marianum possess significant antioxidant activity, as well as valuable chemical compounds accountable for therapeutic effects that might be incorporated as an alternative to synthetic chemical agents.


Assuntos
Antioxidantes , Silybum marianum , Antioxidantes/química , Flavonoides/análise , Flavonoides/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Fenóis/análise , Compostos Fitoquímicos/química , Extratos Vegetais/química , Taninos
7.
Molecules ; 24(17)2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438505

RESUMO

Sagittaria trifolia is a medicinal foodstuff of China and East Asia belonging to the family Alismataceae. Samples of S. trifolia tubers were collected from Meihekow, Siping, Jilin, Harbin and Wuchang from Northeast China. The current study was aimed to evaluate the qualitative and quantitative analysis, antioxidant activity, biochemical analysis and chemical composition of different populations of S. trifolia. By using Folin-Ciocalteu, aluminium chloride colourimetric and 1,1-diphenyl-1-picrylhydrazyl (DPPH), total phenol and flavonoids content and antioxidant activity was analysed. Furthermore, chemical composition, biochemical analysis and mineral substances were also determined. The results showed the presence of flavonoids, phenols, saponins, tannins, glycosides and steroids except for alkaloids and terpenoids by qualitative analysis. Quantitative analysis revealed that highest total phenol, flavonoids content and antioxidant potential identified from Meihekow, i.e., 2.307 mg GAE/g, 12.263 mg QE/g and 77.373%, respectively. Gas chromatography-mass spectrometry results showed the presence of 40 chemical compounds corresponding to 99.44% of total extract that might be responsible for antioxidant properties. Mineral and biochemical analysis revealed the presence of calcium, magnesium, potassium, sodium, iron, copper, zinc and, carbohydrate, protein, fibre and fat contents, respectively. Interestingly, all S. trifolia populations collected from different locations possess similar composition. The dietary values, phytoconstituents, antioxidant activities and nutritional and curative chemical compounds of S. trifolia are beneficial for the nutritherapy of human beings.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Metanol/química , Compostos Fitoquímicos/análise , Sagittaria/química , Compostos de Bifenilo/química , China , Flavonoides/química , Fenóis/química , Picratos/química
8.
Plant Biotechnol J ; 16(8): 1402-1414, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29327510

RESUMO

Pollen germination and pollen tube growth are important physiological processes of sexual reproduction of plants and also are involved in signal transduction. Our previous study reveals that ZmSTK1 and ZmSTK2 are two receptor-like cytoplasmic kinases (RLCK) homologs in Zea mays as members of receptor-like protein kinase (RLK) subfamily, sharing 86% identity at the amino acid level. Here, we report that ZmSTK1 and ZmSTK2, expressed at late stages of pollen development, regulate maize pollen development with additive effect. ZmSTK1 or ZmSTK2 mutation exhibited severe pollen transmission deficiency, which thus influenced pollen fertility. Moreover, the kinase domains of ZmSTKs were cross-interacted with C-terminus of enolases detected by co-immunoprecipitation (Co-IP) and yeast two-hybrid system (Y2H), respectively. Further, the detective ZmSTK1 or ZmSTK2 was associated with decreased activity of enolases and also reduced downstream metabolite contents, which enolases are involved in glycolytic pathway, such as phosphoenolpyruvate (PEP), pyruvate, ADP/ATP, starch, glucose, sucrose and fructose. This study reveals that ZmSTK1 and ZmSTK2 regulate maize pollen development and indirectly participate in glycolytic pathway.


Assuntos
Proteínas de Plantas/metabolismo , Pólen/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Zea mays/metabolismo , Proteínas de Plantas/genética , Pólen/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Zea mays/genética
9.
PLoS One ; 19(6): e0296321, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848347

RESUMO

Parthenium hysterophorus L., an invasive alien species and notorious weed, offers various benefits to the medical and agrochemical industries. This study aimed to evaluate the antioxidant and insecticidal activities of P. hysterophorus flower extract and conduct chemical profiling to identify the phytoconstituents responsible for these biological effects. The antioxidant activity was assessed using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, while gas chromatography mass spectrometry (GCMS) analysis was employed for chemical configuration evaluation. Our findings demonstrate that the dichloromethane (DCM) extract of P. hysterophorus exhibits potent radical scavenging activity (95.03%). Additionally, phytochemical analysis revealed significant amounts of phenols and flavonoids in the distilled water and ethyl acetate extracts (103.30 GAEg-1 and 138.67 QEg-1, respectively). In terms of insecticidal activity, the flower extract displayed maximum mortality rates of 63.33% and 46.67% after 96 hours of exposure at concentrations of 1000 µgmL-1 and 800 µgmL-1, respectively, with similar trends observed at 72 hours. Furthermore, the P. hysterophorus extracts exhibited LC50 values of 1446 µgmL-1 at 72 hours and 750 µgmL-1 at 96 hours. Imidacloprid, the positive control, demonstrated higher mortality rates at 96 hours (97.67%) and 72 hours (91.82%). Moreover, the antioxidant activity of P. hysterophorus extracts exhibited a strong correlation with phenols, flavonoids, and extract yield. GCMS analysis identified 13 chemical compounds, accounting for 99.99% of the whole extract. Ethanol extraction yielded the highest percentage of extract (4.34%), followed by distilled water (3.22%), ethyl acetate (3.17%), and dichloromethane (2.39%). The flower extract of P. hysterophorus demonstrated significant antioxidant and insecticidal activities, accompanied by the presence of valuable chemical compounds responsible for these biological effects, making it a promising alternative to synthetic agents. These findings provide a novel and fundamental basis for further exploration in purifying the chemical compounds for their biological activities.


Assuntos
Antioxidantes , Asteraceae , Flores , Inseticidas , Extratos Vegetais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/farmacologia , Antioxidantes/química , Inseticidas/farmacologia , Inseticidas/química , Asteraceae/química , Animais , Flores/química , Cromatografia Gasosa-Espectrometria de Massas , Flavonoides/análise , Flavonoides/química , Fenóis/análise , Fenóis/química , Parthenium hysterophorus
10.
Biomater Sci ; 12(18): 4682-4694, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39077924

RESUMO

Diabetic wounds represent a common chronic condition, posing significant challenges in the treatment process due to bacterial infections, increased generation of reactive oxygen species (ROS) and exacerbated inflammation. Fenofibrate (FEN) is a clinical medication used for lipid regulation. In this study, it was utilized for the first time as an effective component of wound dressings for treating diabetic ulcers, exploring its novel applications further. Therefore, we prepared a polyvinyl alcohol/chitosan/FEN (PCF) hydrogel using a freeze-thaw method and conducted physicochemical characterization of the PCF hydrogel to further elucidate its biological functions. In vitro studies demonstrated that the PCF hydrogel exhibits excellent biocompatibility along with significant antimicrobial, pro-angiogenic, ROS-scavenging, and anti-inflammatory properties. Subsequent animal experiments indicated that the PCF hydrogel has the ability to promote blood vessel formation and collagen deposition. Additionally, the PCF hydrogel showed a significant inhibitory effect on the inflammatory response, as evidenced by the reductions in the levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). These compelling findings accentuate the promising application of the PCF hydrogel in the treatment of diabetic wounds.


Assuntos
Quitosana , Fenofibrato , Hidrogéis , Cicatrização , Cicatrização/efeitos dos fármacos , Quitosana/química , Quitosana/farmacologia , Animais , Fenofibrato/farmacologia , Fenofibrato/química , Fenofibrato/administração & dosagem , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/administração & dosagem , Camundongos , Humanos , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia , Masculino , Espécies Reativas de Oxigênio/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/administração & dosagem , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Ratos
11.
Int J Biol Macromol ; 263(Pt 2): 130440, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417763

RESUMO

To address the issue of food spoilage causing health and economic loss, we developed a pH/NH3 dual sensitive hydrogel based on polyvinyl alcohol/chitosan (PVA/CS) containing chitosan-phenol red (CP). The CP was synthesized via Mannich reaction and immobilized it in PVA/CS hydrogel through freezing/thawing method to prepare the final PVA/CS/CP hydrogel. The synthesis of CP was confirmed by 1H NMR, FT-IR, XRD, UV-vis, and XPS. The characteristics of hydrogel were evaluated by FT-IR, XRD, SEM, mechanical properties, thermal stability, leaching, and color stability tests. The PVA/CS/CP hydrogel showed distinctly different color at various pH and NH3 vapor levels (yellow to purple). The hydrogel exhibited obvious color changes (ΔE = 46.95) in response to shrimp spoilage, stored at 4 °C. It showed positive and strong correlation between the ΔE values of the indicator hydrogel and total volatile basic nitrogen (TVB-N) as (R2 = 0.9573) and with pH as (R2 = 0.8686), respectively. These results clearly show that the PVA/CS/CP hydrogel could be applied for naked-eye real-time monitoring of seafood freshness in intelligent packaging.


Assuntos
Quitosana , Quitosana/química , Álcool de Polivinil/química , Espectroscopia de Infravermelho com Transformada de Fourier , Hidrogéis/química , Alimentos Marinhos , Concentração de Íons de Hidrogênio , Embalagem de Alimentos/métodos , Antocianinas/química
12.
Eur J Med Chem ; 249: 115151, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36731273

RESUMO

The prevalence of allergic diseases has been continuously increasing over the past few decades, affecting approximately 20-30% of the global population. Allergic reactions to infection of respiratory tract, digestive tract, and skin system involve multiple different targets. The main difficulty of anti-allergy research is how to develop drugs with good curative effect and less side effects by adopting new multi-targets and mechanisms according to the clinical characteristics of different allergic populations and different allergens. This review focuses on information concerning potential therapeutic targets as well as the synthetic anti-allergy small molecules with respect to their medicinal chemistry. The structure-activity relationship and the mechanism of compound-target interaction were highlighted with perspective to histamine-1/4 receptor antagonists, leukotriene biosynthesis, Th2 cytokines inhibitors, and calcium channel blockers. We hope that the study of chemical scaffold modification and optimization for different lead compounds summarized in this review not only lays the foundation for improvement of success rate and efficiency of virtual screening of antiallergic drugs, but also can provide valuable reference for the drug design of related promising research such as allergy, inflammation, and cancer.


Assuntos
Antialérgicos , Hipersensibilidade , Humanos , Antialérgicos/farmacologia , Antialérgicos/uso terapêutico , Química Farmacêutica , Hipersensibilidade/tratamento farmacológico , Citocinas
13.
Sci Rep ; 12(1): 4910, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318417

RESUMO

Terpenoids from natural plant sources are valuable for their diverse biological activities that have important roles in the medical and agrochemical industries. In this study, we assessed the antioxidant, antifungal, and aphicidal activities of a mixture of spinasterol and 22,23-dihydrospinasterol from the leaves of Citrullus colocynthis. We used 1,1-diphenyl-2-picrylhydrazyl (DPPH) to assess antioxidant activity, and we measured antifungal activity using mycelium growth inhibition assays with three pathogenic fungi, Magnaporthe grisea, Rhizoctonia solani, and Phytophthora infestans. Aphicidal activity against adults of Myzus persicae was determined using in vitro and in vivo assays. Spinasterol and 22,23-dihydrospinasterol exhibited moderate antioxidant activity, even at lower concentrations: 19.98% at 0.78 µg mL-1, 31.52% at 3.0 µg mL-1, 36.61% at 12.5 µg mL-1, and 49.76% at 50 µg mL-1. Spinasterol and 22,23-dihydrospinasterol showed reasonable levels of fungicidal activity toward R. solani and M. grisea, with EC50 values of 129.5 and 206.1 µg mL-1, respectively. The positive controls boscalid and carbendazim were highly effective against all fungi except boscalid for M. grisea (EC50 = 868 µg mL-1) and carbendazim for P. infestans (EC50 = 8721 µg mL-1). Significant insecticidal activity was observed in both residual and greenhouse assays, with LC50 values of 42.46, 54.86, and 180.9 µg mL-1 and 32.71, 42.46, and 173.8 µg mL-1 at 72, 48, and 24 h, respectively. The antioxidant activity of spinasterol and 22,23-dihydrospinasterol was strongly positively correlated with their antifungal and insecticidal activity. Spinasterol and 22,23-dihydrospinasterol therefore show good antioxidant and aphicidal activity with moderate fungicidal activity, making them suitable candidates for an alternative to synthetic agents.


Assuntos
Citrullus colocynthis , Triterpenos , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Folhas de Planta , Sitosteroides , Estigmasterol/análogos & derivados , Triterpenos/farmacologia
14.
Sci Rep ; 10(1): 522, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949220

RESUMO

Plant extracts contain many active compounds, which are tremendously fruitful for plant defence against several insect pests. The prime objectives of the present study were to calculate the extraction yield and to evaluate the leaf extracts of Citrullus colocynthis (L.), Cannabis indica (L.) and Artemisia argyi (L.) against Brevicoryne brassicae and to conduct biochemical analysis by gas chromatography-mass spectrometry (GC-MS). The results suggested that when using ethanol, C. colocynthis produced a high dry yield (12.45%), followed by that of C. indica and A. argyi, which were 12.37% and 10.95%, respectively. The toxicity results showed that A. argyi was toxic to B. brassicae with an LC50 of 3.91 mg mL-1, followed by the toxicity of C. colocynthis and C. indica, exhibiting LC50 values of 6.26 and 10.04 mg mL-1, respectively, which were obtained via a residual assay; with a contact assay, the LC50 values of C. colocynthis, C. indica and A. argyi were 0.22 mg mL-1, 1.96 and 2.87 mg mL-1, respectively. The interaction of plant extracts, concentration and time revealed that the maximum mortality based on a concentration of 20 mg L-1 was 55.50%, the time-based mortality was 55% at 72 h of exposure, and the treatment-based mortality was 44.13% for A. argyi via the residual assay. On the other hand, the maximum concentration-based mortality was 74.44% at 20 mg mL-1, the time-based mortality was 66.38% after 72 h of exposure, and 57.30% treatment-based mortality was afforded by A. argyi via the contact assay. The biochemical analysis presented ten constituents in both the A. argyi and C. colocynthis extracts and twenty in that of C. indica, corresponding to 99.80%, 99.99% and 97% of the total extracts, respectively. Moreover, the detected caryophylleneonides (sesquiterpenes), α-bisabolol and dronabinol (Δ9-THC) from C. indica and erucylamide and octasiloxane hexamethyl from C. colocynthis exhibited insecticidal properties, which might be responsible for aphid mortality. However, A. argyi was evaluated for the first time against B. brassicae. It was concluded that all the plant extracts possessed significant insecticidal properties and could be introduced as botanical insecticides after field evaluations.


Assuntos
Afídeos/efeitos dos fármacos , Artemisia/química , Cannabis/química , Citrullus colocynthis/química , Inseticidas/farmacologia , Extratos Vegetais/farmacologia , Animais , Brassica/crescimento & desenvolvimento , Brassica/parasitologia , Relação Dose-Resposta a Droga , Dronabinol/química , Dronabinol/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Inseticidas/química , Sesquiterpenos Monocíclicos/química , Sesquiterpenos Monocíclicos/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Sesquiterpenos/química , Sesquiterpenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa