Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brain Res Bull ; 215: 110996, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38857832

RESUMO

Glioblastoma is the most aggressive and lethal primary brain malignancy with limited treatment options and poor prognosis. Self-renewing glioblastoma cancer stem cells (GSCs) facilitate tumour progression, resistance to conventional treatment and tumour recurrence. GSCs are resistant to standard treatments. There is a need for novel treatment alternatives that effectively target GSCs. The purinergic P2X receptor 7 (P2X7R) is expressed in glioblastomas and has been implicated in disease pathogenesis. However, the roles of P2X7R have not been comprehensively elucidated in conventional treatment-resistant GSCs. This study characterised P2X7R channel and pore function and investigated the effect of pharmacological P2X7R inhibition in GSCs. Immunofluorescence and live cell fluorescent dye uptake experiments revealed P2X7R expression, and channel and pore function in GSCs. Treatment of GSCs with the P2X7R antagonist, AZ10606120 (AZ), for 72 hours significantly reduced GSC numbers, compared to untreated cells. When compared with the effect of the first-line conventional chemotherapy, temozolomide (TMZ), GSCs treated with AZ had significantly lower cell numbers than TMZ-treated cultures, while TMZ treatment alone did not significantly deplete GSC numbers compared to the control. AZ treatment also induced significant lactate dehydrogenase release by GSCs, indicative of treatment-induced cytotoxic cell death. There were no significant differences in the expression of apoptotic markers, Annexin V and cleaved caspase-3, between AZ-treated cells and the control. Collectively, this study reveals for the first time functional P2X7R channel and pore in GSCs and significant GSC depletion following P2X7R inhibition by AZ. These results indicate that P2X7R inhibition may be a novel therapeutic alternative for glioblastoma, with effectiveness against GSCs resistant to conventional chemotherapy.

2.
Sci Rep ; 13(1): 8435, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225786

RESUMO

Glioblastomas are highly aggressive and deadly brain tumours, with a median survival time of 14-18 months post-diagnosis. Current treatment modalities are limited and only modestly increase survival time. Effective therapeutic alternatives are urgently needed. The purinergic P2X7 receptor (P2X7R) is activated within the glioblastoma microenvironment and evidence suggests it contributes to tumour growth. Studies have implicated P2X7R involvement in a range of neoplasms, including glioblastomas, although the roles of P2X7R in the tumour milieu remain unclear. Here, we report a trophic, tumour-promoting role of P2X7R activation in both patient-derived primary glioblastoma cultures and the U251 human glioblastoma cell line, and demonstrate its inhibition reduces tumour growth in vitro. Primary glioblastoma and U251 cell cultures were treated with the specific P2X7R antagonist, AZ10606120 (AZ), for 72 h. The effects of AZ treatment were also compared to cells treated with the current first-line chemotherapeutic drug, temozolomide (TMZ), and a combination of both AZ and TMZ. P2X7R antagonism by AZ significantly depleted glioblastoma cell numbers compared to untreated cells, in both primary glioblastoma and U251 cultures. Notably, AZ treatment was more effective at tumour cell killing than TMZ. No synergistic effect between AZ and TMZ was observed. AZ treatment also significantly increased lactate dehydrogenase release in primary glioblastoma cultures, suggesting AZ-induced cellular cytotoxicity. Our results reveal a trophic role of P2X7R in glioblastoma. Importantly, these data highlight the potential for P2X7R inhibition as a novel and effective alternative therapeutic approach for patients with lethal glioblastomas.


Assuntos
Adamantano , Glioblastoma , Antagonistas do Receptor Purinérgico P2X , Humanos , Adamantano/análogos & derivados , Adamantano/farmacologia , Aminoquinolinas/farmacologia , Glioblastoma/tratamento farmacológico , Receptores Purinérgicos P2X7 , Temozolomida/farmacologia , Microambiente Tumoral , Antagonistas do Receptor Purinérgico P2X/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa