Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Bacteriol ; 202(13)2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32291280

RESUMO

Sneathia amnii is a poorly characterized emerging pathogen that has been implicated in amnionitis and urethritis. We found that S. amnii damages fetal membranes, and we identified and purified a cytotoxic exotoxin that lyses human red blood cells and damages cells from fetal membranes. The gene appears to be cotranscribed with a second gene that encodes a protein with identity to two-partner system transporters, suggesting that it is the "A," or secreted component of a type Vb system. The toxin is 1,881 amino acids with a molecular weight of approximately 200 kDa. It binds to red blood cell membranes and forms pores with a diameter of 2.0 to 3.0 nm, resulting in osmolysis. Because it appears to be the "A" or passenger component of a two-partner system, we propose to name this novel cytotoxin/hemolysin CptA for cytopathogenic toxin component A.IMPORTANCESneathia amnii is a very poorly characterized emerging pathogen that can affect pregnancy outcome and cause urethritis and other infections. To date, nothing is known about its virulence factors or pathogenesis. We have identified and isolated a cytotoxin, named CptA for cytopathogenic toxin, component A, that is produced by S. amnii CptA is capable of permeabilizing chorionic trophoblasts and lysing human red blood cells and, thus, may play a role in virulence. Except for small domains conserved among two-partner secretion system passenger proteins, the cytotoxin exhibits little amino acid sequence homology to known toxins. In this study, we demonstrate the pore-forming activity of this novel toxin.


Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Fusobactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidade , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Fusobactérias/química , Fusobactérias/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Hemólise/efeitos dos fármacos , Humanos , Peso Molecular
2.
Proc Natl Acad Sci U S A ; 114(5): E781-E790, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096373

RESUMO

Arthropods transmit diverse infectious agents; however, the ways microbes influence their vector to enhance colonization are poorly understood. Ixodes scapularis ticks harbor numerous human pathogens, including Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis. We now demonstrate that A. phagocytophilum modifies the I. scapularis microbiota to more efficiently infect the tick. A. phagocytophilum induces ticks to express Ixodes scapularis antifreeze glycoprotein (iafgp), which encodes a protein with several properties, including the ability to alter bacterial biofilm formation. IAFGP thereby perturbs the tick gut microbiota, which influences the integrity of the peritrophic matrix and gut barrier-critical obstacles for Anaplasma colonization. Mechanistically, IAFGP binds the terminal d-alanine residue of the pentapeptide chain of bacterial peptidoglycan, resulting in altered permeability and the capacity of bacteria to form biofilms. These data elucidate the molecular mechanisms by which a human pathogen appropriates an arthropod antibacterial protein to alter the gut microbiota and more effectively colonize the vector.


Assuntos
Anaplasma phagocytophilum/fisiologia , Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Ixodes/microbiologia , Animais , Proteínas Anticongelantes/metabolismo , Proteínas de Artrópodes/metabolismo , Ehrlichiose , Camundongos , Peptidoglicano/metabolismo
3.
Infect Immun ; 87(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30692180

RESUMO

Studies have implicated Gardnerella vaginalis as an important etiological agent in bacterial vaginosis (BV). It produces a cholesterol-dependent cytolysin, vaginolysin (VLY). In this study, we sought to characterize the interaction between vaginal epithelium, G. vaginalis, and VLY using EpiVaginal tissues from MatTek. These tissues are three-dimensional and have distinct apical and basolateral sides, enabling comparison of the effects of G. vaginalis and VLY following exposure to either side. We measured cytotoxicity, cytokine production, and bacterial growth, following apical versus basolateral exposure. G. vaginalis exhibited more-rapid growth in coculture with the tissue model when it was exposed to the apical side. VLY permeabilized cells on the basolateral side of the tissues but failed to permeabilize apical epithelial cells. Cytokine secretion in response to VLY and G. vaginalis also depended on the polarity of exposure. VLY did not cause significant changes in cytokine levels when exposed apically. Apical tissue challenge by G. vaginalis appeared to dampen the inflammatory response, as decreases in granulocyte-macrophage colony-stimulating factor (GM-CSF) (6.6-fold), RANTES (14.8-fold), and interferon gamma inducible protein 10 kDa (IP-10) (53-fold) and an increase in interleukin-1 receptor antagonist (IL-1ra) (5-fold) were observed. In vivo, G. vaginalis normally colonizes the apical face of the vaginal epithelium. Results from this study suggest that while G. vaginalis may grow on the apical face of the vaginal epithelium, its VLY toxin does not target these cells in this model. This phenomenon could have important implications regarding colonization of the vagina by G. vaginalis and may suggest an explanation for the lack of an overt immune response to this organism.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Epitélio/microbiologia , Gardnerella vaginalis/metabolismo , Vagina/microbiologia , Vaginose Bacteriana/microbiologia , Feminino , Gardnerella vaginalis/genética , Gardnerella vaginalis/crescimento & desenvolvimento , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Interleucina-18/genética , Interleucina-18/metabolismo , Vagina/patologia , Vaginose Bacteriana/genética , Vaginose Bacteriana/metabolismo , Vaginose Bacteriana/patologia
4.
Am J Obstet Gynecol ; 220(3): 267.e1-267.e39, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30832984

RESUMO

BACKGROUND: The human placenta has been traditionally viewed as sterile, and microbial invasion of this organ has been associated with adverse pregnancy outcomes. Yet, recent studies that utilized sequencing techniques reported that the human placenta at term contains a unique microbiota. These conclusions are largely based on the results derived from the sequencing of placental samples. However, such an approach carries the risk of capturing background-contaminating DNA (from DNA extraction kits, polymerase chain reaction reagents, and laboratory environments) when low microbial biomass samples are studied. OBJECTIVE: To determine whether the human placenta delivered at term in patients without labor who undergo cesarean delivery harbors a resident microbiota ("the assemblage of microorganisms present in a defined niche or environment"). STUDY DESIGN: This cross-sectional study included placentas from 29 women who had a cesarean delivery without labor at term. The study also included technical controls to account for potential background-contaminating DNA, inclusive in DNA extraction kits, polymerase chain reaction reagents, and laboratory environments. Bacterial profiles of placental tissues and background technical controls were characterized and compared with the use of bacterial culture, quantitative real-time polymerase chain reaction, 16S ribosomal RNA gene sequencing, and metagenomic surveys. RESULTS: (1) Twenty-eight of 29 placental tissues had a negative culture for microorganisms. The microorganisms retrieved by culture from the remaining sample were likely contaminants because corresponding 16S ribosomal RNA genes were not detected in the same sample. (2) Quantitative real-time polymerase chain reaction did not indicate greater abundances of bacterial 16S ribosomal RNA genes in placental tissues than in technical controls. Therefore, there was no evidence of the presence of microorganisms above background contamination from reagents in the placentas. (3) 16S ribosomal RNA gene sequencing did not reveal consistent differences in the composition or structure of bacterial profiles between placental samples and background technical controls. (4) Most of the bacterial sequences obtained from metagenomic surveys of placental tissues were from cyanobacteria, aquatic bacteria, or plant pathogens, which are microbes unlikely to populate the human placenta. Coprobacillus, which constituted 30.5% of the bacterial sequences obtained through metagenomic sequencing of placental samples, was not identified in any of the 16S ribosomal RNA gene surveys of these samples. These observations cast doubt as to whether this organism is really present in the placenta of patients at term not in labor. CONCLUSION: With the use of multiple modes of microbiologic inquiry, a resident microbiota could not be identified in human placentas delivered at term from women without labor. A consistently significant difference in the abundance and/or presence of a microbiota between placental tissue and background technical controls could not be found. All cultures of placental tissue, except 1, did not yield bacteria. Incorporating technical controls for potential sources of background-contaminating DNA for studies of low microbial biomass samples, such as the placenta, is necessary to derive reliable conclusions.


Assuntos
Microbiota , Placenta/microbiologia , Adulto , Cesárea , Estudos Transversais , Contaminação por DNA , DNA Bacteriano/análise , Feminino , Marcadores Genéticos , Humanos , Metagenômica , Microbiota/genética , Gravidez , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Nascimento a Termo
5.
Microbiology (Reading) ; 162(3): 466-475, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26747455

RESUMO

Vaginal lactobacilli can inhibit colonization by and growth of other bacteria, thereby preventing development of bacterial vaginosis (BV). Amongst the lactobacilli, Lactobacillus crispatus appears to be particularly effective at inhibiting growth of BV-associated bacteria. Nonetheless, some women who are colonized with this species can still develop clinical BV. Therefore, we sought to determine whether strains of L. crispatus that colonize women with lactobacilli-dominated vaginal microbiomes are distinct from strains that colonize women who develop BV. The genomes of L. crispatus isolates from four women with lactobacilli-dominated vaginal microbiomes ( <1% 16S rRNA reads above threshold from genera other than Lactobacillus) and four women with microbiomes containing BV-associated bacteria (>12% 16S rRNA reads from bacterial taxa associated with BV) were sequenced and compared. Lactic acid production by the different strains was quantified. Phage induction in the strains was also analysed. There was considerable genetic diversity between strains, and several genes were exclusive to either the strains from Lactobacillus-dominated microbiomes or those containing BV-associated bacteria. Overall, strains from microbiomes dominated by lactobacilli did not differ from strains from microbiomes containing BV-associated bacteria with respect to lactic acid production. All of the strains contained multiple phage, but there was no clear distinction between the presence or absence of BV-associated bacteria with respect to phage-induced lysis. Genes found to be exclusive to the Lactobacillus-dominated versus BV-associated bacteria-containing microbiomes could play a role in the maintenance of vaginal health and the development of BV, respectively.


Assuntos
Variação Genética , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Microbiota , Vagina/microbiologia , Vaginose Bacteriana/microbiologia , Bacteriófagos/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/genética , Feminino , Genoma Bacteriano , Humanos , Ácido Láctico/metabolismo , Lactobacillus/metabolismo , Análise de Sequência de DNA
6.
PLoS Pathog ; 10(7): e1004292, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25077798

RESUMO

Polysaccharide intercellular adhesin (PIA), also known as poly-N-acetyl-ß-(1-6)-glucosamine (PIA/PNAG) is an important component of Staphylococcus aureus biofilms and also contributes to resistance to phagocytosis. The proteins IcaA, IcaD, IcaB, and IcaC are encoded within the intercellular adhesin (ica) operon and synthesize PIA/PNAG. We discovered a mechanism of phase variation in PIA/PNAG expression that appears to involve slipped-strand mispairing. The process is reversible and RecA-independent, and involves the expansion and contraction of a simple tetranucleotide tandem repeat within icaC. Inactivation of IcaC results in a PIA/PNAG-negative phenotype. A PIA/PNAG-hyperproducing strain gained a fitness advantage in vitro following the icaC mutation and loss of PIA/PNAG production. The mutation was also detected in two clinical isolates, suggesting that under certain conditions, loss of PIA/PNAG production may be advantageous during infection. There was also a survival advantage for an icaC-negative strain harboring intact icaADB genes relative to an isogenic icaADBC deletion mutant. Together, these results suggest that inactivation of icaC is a mode of phase variation for PIA/PNAG expression, that high-level production of PIA/PNAG carries a fitness cost, and that icaADB may contribute to bacterial fitness, by an unknown mechanism, in the absence of an intact icaC gene and PIA/PNAG production.


Assuntos
Acetilglucosamina/metabolismo , Proteínas de Bactérias/metabolismo , Polissacarídeos Bacterianos/metabolismo , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/isolamento & purificação , Proteínas de Bactérias/genética , Sequência de Bases , Biofilmes , Regulação Bacteriana da Expressão Gênica , Humanos , Immunoblotting , Dados de Sequência Molecular , Mutação/genética , Óperon , Transição de Fase , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Infecções Estafilocócicas/genética , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo , Sequências de Repetição em Tandem , Células Tumorais Cultivadas , beta-Glucanas/metabolismo
7.
BMC Microbiol ; 15: 66, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25880246

RESUMO

BACKGROUND: Characterizing microbial communities via next-generation sequencing is subject to a number of pitfalls involving sample processing. The observed community composition can be a severe distortion of the quantities of bacteria actually present in the microbiome, hampering analysis and threatening the validity of conclusions from metagenomic studies. We introduce an experimental protocol using mock communities for quantifying and characterizing bias introduced in the sample processing pipeline. We used 80 bacterial mock communities comprised of prescribed proportions of cells from seven vaginally-relevant bacterial strains to assess the bias introduced in the sample processing pipeline. We created two additional sets of 80 mock communities by mixing prescribed quantities of DNA and PCR product to quantify the relative contribution to bias of (1) DNA extraction, (2) PCR amplification, and (3) sequencing and taxonomic classification for particular choices of protocols for each step. We developed models to predict the "true" composition of environmental samples based on the observed proportions, and applied them to a set of clinical vaginal samples from a single subject during four visits. RESULTS: We observed that using different DNA extraction kits can produce dramatically different results but bias is introduced regardless of the choice of kit. We observed error rates from bias of over 85% in some samples, while technical variation was very low at less than 5% for most bacteria. The effects of DNA extraction and PCR amplification for our protocols were much larger than those due to sequencing and classification. The processing steps affected different bacteria in different ways, resulting in amplified and suppressed observed proportions of a community. When predictive models were applied to clinical samples from a subject, the predicted microbiome profiles were better reflections of the physiology and diagnosis of the subject at the visits than the observed community compositions. CONCLUSIONS: Bias in 16S studies due to DNA extraction and PCR amplification will continue to require attention despite further advances in sequencing technology. Analysis of mock communities can help assess bias and facilitate the interpretation of results from environmental samples.


Assuntos
Artefatos , Bactérias/genética , DNA Bacteriano/genética , Genes de RNAr , RNA Ribossômico 16S/genética , Manejo de Espécimes/normas , Bactérias/classificação , Bactérias/isolamento & purificação , Viés , DNA Bacteriano/isolamento & purificação , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Metagenômica/instrumentação , Metagenômica/métodos , Metagenômica/normas , Consórcios Microbianos/genética , Microbiota/genética , Modelos Biológicos , Filogenia , Reação em Cadeia da Polimerase/normas , RNA Ribossômico 16S/isolamento & purificação , Vagina/microbiologia
8.
Am J Obstet Gynecol ; 212(6): 779.e1-779.e13, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25637842

RESUMO

OBJECTIVE: Microbial invasion of the amniotic cavity is associated with spontaneous preterm labor and adverse pregnancy outcome, and Mycoplasma hominis often is present. However, the pathogenic process by which M hominis invades the amniotic cavity and gestational tissues, often resulting in chorioamnionitis and preterm birth, remains unknown. We hypothesized that strains of M hominis vary genetically with regards to their potential to invade and colonize the amniotic cavity and placenta. STUDY DESIGN: We sequenced the entire genomes of 2 amniotic fluid isolates and a placental isolate of M hominis from pregnancies that resulted in preterm births and compared them with the previously sequenced genome of the type strain PG21. We identified genes that were specific to the amniotic fluid/placental isolates. We then determined the microbial burden and the presence of these genes in another set of subjects from whom samples of amniotic fluid had been collected and were positive for M hominis. RESULTS: We identified 2 genes that encode surface-located membrane proteins (Lmp1 and Lmp-like) in the sequenced amniotic fluid/placental isolates that were truncated severely in PG21. We also identified, for the first time, a microbial gene of unknown function that is referred to in this study as gene of interest C that was associated significantly with bacterial burden in amniotic fluid and the risk of preterm delivery in patients with preterm labor. CONCLUSION: A gene in M hominis was identified that is associated significantly with colonization and/or infection of the upper reproductive tract during pregnancy and with preterm birth.


Assuntos
Âmnio/microbiologia , Líquido Amniótico/microbiologia , Corioamnionite/microbiologia , Infecções por Mycoplasma/complicações , Infecções por Mycoplasma/microbiologia , Mycoplasma hominis/genética , Mycoplasma hominis/isolamento & purificação , Placenta/microbiologia , Nascimento Prematuro/microbiologia , Adulto , Feminino , Humanos , Gravidez , Adulto Jovem
9.
Microbiology (Reading) ; 160(Pt 10): 2272-2282, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25073854

RESUMO

Women of European ancestry are more likely to harbour a Lactobacillus-dominated microbiome, whereas African American women are more likely to exhibit a diverse microbial profile. African American women are also twice as likely to be diagnosed with bacterial vaginosis and are twice as likely to experience preterm birth. The objective of this study was to further characterize and contrast the vaginal microbial profiles in African American versus European ancestry women. Through the Vaginal Human Microbiome Project at Virginia Commonwealth University, 16S rRNA gene sequence analysis was used to compare the microbiomes of vaginal samples from 1268 African American women and 416 women of European ancestry. The results confirmed significant differences in the vaginal microbiomes of the two groups and identified several taxa relevant to these differences. Major community types were dominated by Gardnerella vaginalis and the uncultivated bacterial vaginosis-associated bacterium-1 (BVAB1) that were common among African Americans. Moreover, the prevalence of multiple bacterial taxa that are associated with microbial invasion of the amniotic cavity and preterm birth, including Mycoplasma, Gardnerella, Prevotella and Sneathia, differed between the two ethnic groups. We investigated the contributions of intrinsic and extrinsic factors, including pregnancy, body mass index, diet, smoking and alcohol use, number of sexual partners, and household income, to vaginal community composition. Ethnicity, pregnancy and alcohol use correlated significantly with the relative abundance of bacterial vaginosis-associated species. Trends between microbial profiles and smoking and number of sexual partners were observed; however, these associations were not statistically significant. These results support and extend previous findings that there are significant differences in the vaginal microbiome related to ethnicity and demonstrate that these differences are pronounced even in healthy women.


Assuntos
Microbiota , Vagina/microbiologia , Negro ou Afro-Americano , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Feminino , Humanos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Virginia , População Branca
10.
Immunohorizons ; 8(1): 114-121, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38276916

RESUMO

Sneathia vaginalis is a Gram-negative vaginal species that is associated with pregnancy complications. It produces cytopathogenic toxin A (CptA), a pore-forming toxin. To determine whether CptA is expressed in vivo and to examine the mucosal Ab response to the toxin, we examined human midvaginal swab samples obtained during pregnancy for IgM, IgA, and IgG Abs with CptA affinity. This subcohort study included samples from 93 pregnant people. S. vaginalis relative abundance was available through 16S rRNA survey. There were 22 samples from pregnancies that resulted in preterm birth in which S. vaginalis relative abundance was <0.005%, 22 samples from pregnancies that resulted in preterm birth with S. vaginalis ≥0.005%, 24 samples from pregnancies that resulted in term birth with S. vaginalis <0.005%, and 25 samples from pregnancies that resulted in term birth with S. vaginalis ≥0.005%. IgM, IgA, and IgG with affinity for CptA were assessed by ELISA. The capacity for the samples to neutralize CptA was quantified by hemolysis assay. All three Ab isotypes were detectable within different subsets of the samples. There was no significant association between relative abundance of S. vaginalis and the presence of any Ab isotype. The majority of vaginal swab samples containing detectable levels of anti-CptA Abs neutralized the hemolytic activity of CptA, with the strongest correlation between IgA and neutralizing activity. These results demonstrate that S. vaginalis produces CptA in vivo and that CptA is recognized by the host immune defenses, resulting in the production of Abs with toxin-neutralizing ability.


Assuntos
Etilaminas , Nascimento Prematuro , Recém-Nascido , Gravidez , Feminino , Humanos , Formação de Anticorpos , RNA Ribossômico 16S , Imunoglobulina G , Imunoglobulina M , Imunoglobulina A
11.
mSphere ; : e0045024, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38926904

RESUMO

The Gardnerella genus, comprising at least 13 species, is associated with the polymicrobial disorder bacterial vaginosis (BV). However, the details of BV pathogenesis are poorly defined, and the contributions made by individual species, including Gardnerella spp., are largely unknown. We report here that colony phenotypes characterized by size (large and small) and opacity (opaque and translucent) are phase variable and are conserved among all tested Gardnerella strains, representing at least 10 different species. With the hypothesis that these different variants could be an important missing piece to the enigma of how BV develops in vivo, we characterized their phenotypic, proteomic, and genomic differences. Beyond increased colony size, large colony variants showed reduced vaginolysin secretion and faster growth rate relative to small colony variants. The ability to inhibit the growth of Neisseria gonorrhoeae and commensal Lactobacillus species varied by strain and, in some instances, differed between variants. Proteomics analyses indicated that 127-173 proteins were differentially expressed between variants. Proteins with increased expression in large variants of both strains were associated with amino acid and protein synthesis and protein folding, whereas those increased in small variants were related to nucleotide synthesis, phosphate transport, ABC transport, and glycogen breakdown. Furthermore, whole genome sequencing analyses revealed an abundance of genes associated with variable homopolymer tracts, implicating slipped strand mispairing in Gardnerella phase variation and illuminating the potential for previously unrecognized heterogeneity within clonal populations. Collectively, these results suggest that phase variants may be primed to serve different roles in BV pathogenesis.IMPORTANCEBacterial vaginosis is the most common gynecological disorder in women of childbearing age. Gardnerella species are crucial to the development of this dysbiosis, but the mechanisms involved in the infection are not understood. We discovered that Gardnerella species vary between two different forms, reflected in bacterial colony size. A slow-growing form makes large amounts of the toxin vaginolysin and is better able to survive in human cervix tissue. A fast-growing form is likely the one that proliferates to high numbers just prior to symptom onset and forms the biofilm that serves as a scaffold for multiple BV-associated anaerobic bacteria. Identification of the proteins that vary between different forms of the bacteria as well as those that vary randomly provides insight into the factors important for Gardnerella infection and immune avoidance.

12.
Int J Med Sci ; 10(9): 1193-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935396

RESUMO

Bacterial vaginosis (BV) is the most common vaginal disorder in women of child-bearing age. It is widely accepted that the microbial switch from normal microflora to the flora commonly associated with BV is characterized by a decrease in vaginal colonization by specific Lactobacillus species together with an increase of G. vaginalis and other anaerobes. However, the order of events leading to the development of BV remains poorly characterized and it is unclear whether the decrease in lactobacilli is a cause or a consequence of the increase in the population density of anaerobes. Our goal was to characterize the interaction between two Gardnerella vaginalis strains, one of which was isolated from a healthy woman (strain 5-1) and the other from a woman diagnosed with BV (strain 101), and vaginal lactobacilli on the adherence to cervical epithelial cells. In order to simulate the transition from vaginal health to BV, the lactobacilli were cultured with the epithelial cells first, and then the G. vaginalis strain was introduced. We quantified the inhibition of G. vaginalis adherence by the lactobacilli and displacement of adherent lactobacilli by G. vaginalis. Our results confirmed that pathogenic G vaginalis 101 had a higher capacity for adhesion to the cervical epithelial cells than strain 5-1. Interestingly, strain 101 displaced L. crispatus but not L. iners whereas strain 5-1 had less of an effect and did not affect the two species differently. Furthermore, L. iners actually enhanced adhesion of strain 101 but not of strain 5-1. These results suggest that BV-causing G. vaginalis and L. iners do not interfere with one another, which may help to explain previous reports that women who are colonized with L. iners are more likely to develop BV.


Assuntos
Aderência Bacteriana/fisiologia , Células Epiteliais/microbiologia , Gardnerella vaginalis/fisiologia , Lactobacillus/fisiologia , Vaginose Bacteriana/microbiologia , Feminino , Células HeLa , Humanos
13.
PLoS One ; 18(5): e0284349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37141247

RESUMO

The association between Sneathia vaginalis and preterm birth is emerging. The Gram-negative anaerobe produces a large exotoxin, the cytopathogenic toxin A (CptA), that forms pores in human epithelial cells and red blood cells. The structure of the toxin has not been determined, but in silico analysis predicts that a large amino-terminal region of the protein is globular and separated from the carboxy-terminal tandem repeats by a disordered region. We found that a recombinant protein consisting of the predicted structured amino-terminal portion of CptA and devoid of the repeat region was sufficient to permeabilize epithelial cells and red blood cells. The repeat region was capable of binding to epithelial cells but did not permeabilize them or lyse red blood cells. CptA is the only S. vaginalis virulence factor that has been examined mechanistically to date, and this analysis sets the foundation for an understanding of how this novel pore-forming toxin exerts its activity.


Assuntos
Nascimento Prematuro , Recém-Nascido , Feminino , Humanos , Nascimento Prematuro/metabolismo , Células Epiteliais/metabolismo , Membrana Celular/metabolismo , Fatores de Virulência/metabolismo
14.
BMC Genomics ; 13 Suppl 8: S4, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23281612

RESUMO

BACKGROUND: Bacteria of the genus Sneathia are emerging as potential pathogens of the female reproductive tract. Species of Sneathia, which were formerly grouped with Leptotrichia, can be part of the normal microbiota of the genitourinary tracts of men and women, but they are also associated with a variety of clinical conditions including bacterial vaginosis, preeclampsia, preterm labor, spontaneous abortion, post-partum bacteremia and other invasive infections. Sneathia species also exhibit a significant correlation with sexually transmitted diseases and cervical cancer. Because Sneathia species are fastidious and rarely cultured successfully in vitro; and the genomes of members of the genus had until now not been characterized, very little is known about the physiology or the virulence of these organisms. RESULTS: Here, we describe a novel species, Sneathia amnii sp. nov, which closely resembles bacteria previously designated "Leptotrichia amnionii". As part of the Vaginal Human Microbiome Project at VCU, a vaginal isolate of S. amnii sp. nov. was identified, successfully cultured and bacteriologically cloned. The biochemical characteristics and virulence properties of the organism were examined in vitro, and the genome of the organism was sequenced, annotated and analyzed. The analysis revealed a reduced circular genome of ~1.34 Mbp, containing ~1,282 protein-coding genes. Metabolic reconstruction of the bacterium reflected its biochemical phenotype, and several genes potentially associated with pathogenicity were identified. CONCLUSIONS: Bacteria with complex growth requirements frequently remain poorly characterized and, as a consequence, their roles in health and disease are unclear. Elucidation of the physiology and identification of genes putatively involved in the metabolism and virulence of S. amnii may lead to a better understanding of the role of this potential pathogen in bacterial vaginosis, preterm birth, and other issues associated with vaginal and reproductive health.


Assuntos
Genoma Bacteriano , Leptotrichia/genética , Análise de Sequência de DNA , Antibacterianos/farmacologia , Feminino , Humanos , Leptotrichia/classificação , Leptotrichia/efeitos dos fármacos , Metagenoma , Testes de Sensibilidade Microbiana , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Vagina/microbiologia , Virulência/genética
15.
BMC Genomics ; 13 Suppl 8: S17, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23282177

RESUMO

BACKGROUND: The application of next-generation sequencing to the study of the vaginal microbiome is revealing the spectrum of microbial communities that inhabit the human vagina. High-resolution identification of bacterial taxa, minimally to the species level, is necessary to fully understand the association of the vaginal microbiome with bacterial vaginosis, sexually transmitted infections, pregnancy complications, menopause, and other physiological and infectious conditions. However, most current taxonomic assignment strategies based on metagenomic 16S rDNA sequence analysis provide at best a genus-level resolution. While surveys of 16S rRNA gene sequences are common in microbiome studies, few well-curated, body-site-specific reference databases of 16S rRNA gene sequences are available, and no such resource is available for vaginal microbiome studies. RESULTS: We constructed the Vaginal 16S rDNA Reference Database, a comprehensive and non-redundant database of 16S rDNA reference sequences for bacterial taxa likely to be associated with vaginal health, and we developed STIRRUPS, a new method that employs the USEARCH algorithm with a curated reference database for rapid species-level classification of 16S rDNA partial sequences. The method was applied to two datasets of V1-V3 16S rDNA reads: one generated from a mock community containing DNA from six bacterial strains associated with vaginal health, and a second generated from over 1,000 mid-vaginal samples collected as part of the Vaginal Human Microbiome Project at Virginia Commonwealth University. In both datasets, STIRRUPS, used in conjunction with the Vaginal 16S rDNA Reference Database, classified more than 95% of processed reads to a species-level taxon using a 97% global identity threshold for assignment. CONCLUSIONS: This database and method provide accurate species-level classifications of metagenomic 16S rDNA sequence reads that will be useful for analysis and comparison of microbiome profiles from vaginal samples. STIRRUPS can be used to classify 16S rDNA sequence reads from other ecological niches if an appropriate reference database of 16S rDNA sequences is available.


Assuntos
Bactérias/classificação , Metagenoma , Vagina/microbiologia , Algoritmos , Bactérias/genética , Bases de Dados Genéticas , Feminino , Humanos , RNA Ribossômico 16S/genética
16.
Microbiology (Reading) ; 158(Pt 6): 1504-1512, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22442307

RESUMO

Staphylococcus aureus is the leading cause of nosocomial infections and a major cause of community-acquired infections. Biofilm formation is a key virulence determinant in certain types of S. aureus infection, especially those involving inserted medical devices. We found in a previous study that the calcium chelators sodium citrate and EGTA inhibit biofilm formation in certain strains of S. aureus but actually augment biofilm formation in other strains. Even two closely related strains, Newman and 10833, exhibited strikingly different biofilm phenotypes in the presence of calcium chelators, in that biofilm formation was inhibited in Newman but augmented in 10833. We also found that the surface protein clumping factor B (ClfB) plays a role in this phenomenon. In this study, we confirm that ClfB is required for biofilm formation under calcium-depleted conditions. We investigated the post-translational regulation of ClfB-mediated biofilm formation and found evidence that both calcium and the protease aureolysin disrupt established ClfB-dependent biofilms. Finally, we investigated the genetic basis for the biofilm-negative phenotype in strain Newman versus the biofilm-positive phenotype in strain 10833 under calcium-depleted conditions and found that strain 10833 contains a deletion that results in a stop codon within the aureolysin gene (aur). When 10833 expressed Newman aur, surface-associated ClfB and the ability to form a biofilm in chelating conditions was lost. Thus, the positive effect of chelating agents on biofilm formation in certain strains can be explained by increased ClfB activity in the absence of calcium and the discrepancy in the response of strains 10833 and Newman can be explained by point mutations in aur. This study reveals a previously unknown, to our knowledge, role for ClfB in biofilm formation and underscores the potential for striking phenotypic variability resulting from minor differences in strain background.


Assuntos
Biofilmes , Cálcio/metabolismo , Coagulase/metabolismo , Staphylococcus aureus/enzimologia , Staphylococcus aureus/fisiologia , Aderência Bacteriana , Coagulase/genética , Staphylococcus aureus/genética
17.
Adv Appl Microbiol ; 80: 1-22, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22794142

RESUMO

Preterm birth is the leading cause of infant morbidity and mortality. Very preterm births, those occurring before 32 completed weeks of gestation, are associated with the greatest risks. The leading cause of very preterm birth is intrauterine infection, which can lead to an inflammatory response that triggers labor or preterm premature rupture of membranes. How bacteria invade the uterine cavity, which is normally a sterile environment, and the reasons why different species vary in their capacity to induce inflammation and preterm birth are still incompletely understood. However, advanced techniques that circumvent the need for cultivating bacteria, deep sequence analysis that allows for the comprehensive characterization of the microbiome of a given body site and detection of low-prevalence species, and transcriptomics and metabolomics approaches that shed light on the host response to bacterial invasion are all providing a more complete picture of the progression from vaginal colonization to uterine invasion to preterm labor and preterm birth.


Assuntos
Ruptura Prematura de Membranas Fetais , Nascimento Prematuro , Bactérias , Humanos , Recém-Nascido , Trabalho de Parto , Trabalho de Parto Prematuro , Vagina
18.
Adv Appl Microbiol ; 81: 63-87, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22958527

RESUMO

The biofilm phenotype has been recognized only relatively recently in medical history but it has rapidly become clear that the development of many, if not the majority of bacterial infections depends upon the formation of a biofilm. Medical device-related infections are one of the clearest examples of biofilm-dependent infections. Bacteria proficiently adhere to and establish biofilms on synthetic surfaces, and to date, no material has proven to completely preclude bacterial adherence. Any inserted device can be colonized but intravenous catheters, due to their widespread use, are the most commonly colonized devices. As many as half a million catheter-related infections occur each year in the United States and the staphylococci, in particular, Staphylococcus aureus and Staphylococcus epidermidis, are the leading cause. Biofilms exhibit tolerance to biocides, chemotherapeutic agents, and host-immune defenses and subsequently, biofilm-associated infections are extremely difficult to treat, frequently chronic, and often recurrent, making them a confounding clinical problem. Development of an effective strategy for preventing and/or treating these infections is of paramount importance and consequently, the search for novel approaches to target the biofilm phenotype has exploded in recent years. Because the biofilm phenotype is complex, targets for antibiofilm approaches are numerous and this line of research is significantly expanding our knowledge about the biofilm mode of growth and its role in disease. This review highlights a number of antibiofilm approaches that are currently under investigation as novel interventions for staphylococcal infections.


Assuntos
Biofilmes , Staphylococcus aureus , Aderência Bacteriana , Proteínas de Bactérias/genética , Humanos , Infecções Estafilocócicas , Staphylococcus , Staphylococcus epidermidis
19.
Chem Biodivers ; 9(5): 965-76, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22589096

RESUMO

Until recently, bacterial species that inhabit the human vagina have been primarily studied using organism-centric approaches. Understanding how these bacterial species interact with each other and the host vaginal epithelium is essential for a more complete understanding of vaginal health. Molecular approaches have already led to the identification of uncultivated bacterial taxa associated with bacterial vaginosis. Here, we review recent studies of the vaginal microbiome and discuss how culture-independent approaches, such as applications of next-generation sequencing, are advancing the field and shifting our understanding of how vaginal health is defined. This work may lead to improved diagnostic tools and treatments for women who suffer from, or are at risk for, vaginal imbalances, pregnancy complications, and sexually acquired infections. These approaches may also transform our understanding of how host genetic factors, physiological conditions (e.g., menopause), and environmental exposures (e.g., smoking, antibiotic usage) influence the vaginal microbiome.


Assuntos
Metagenoma , Vagina/microbiologia , Bactérias/isolamento & purificação , Feminino , Humanos , Lactobacillus/isolamento & purificação , Gravidez , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
20.
Obesity (Silver Spring) ; 30(1): 142-152, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34806323

RESUMO

OBJECTIVE: The aim of this study was to evaluate the differences between the vaginal microbiome of reproductive-aged women with overweight and obesity (Ow/Ob) compared with healthy weight (HW). METHODS: In this case-control study, a cohort of 367 nonpregnant women (18 to 40 years) with Ow/Ob (BMI ≥25 kg/m2 ) was case-matched with 367 women with HW (BMI 18.0 to 24.9 kg/m2 ). The study was a secondary analysis of 16S rRNA vaginal microbiome surveys through the Vaginal Human Microbiome Study (VaHMP). Groups were matched on age, race/ethnicity, income, and nulliparity status. RESULTS: Mean age and BMI of Ow/Ob and HW groups were 26.8 versus 26.7 years and 37.0 versus 22.1 kg/m2 , respectively. The overall vaginal microbiome composition differed between groups (PERMANOVA, p = 0.035). Women with Ow/Ob had higher alpha diversity compared with women with HW (Wilcoxon test, Shannon index p = 0.025; inverse Simpson index p = 0.026). Lactobacillus dominance (≥30% proportional abundance) was observed in a greater proportion of women with HW (48.7%) compared with Ow/Ob (40.1%; p = 0.026). CONCLUSIONS: The vaginal microbiome differs in reproductive-aged women with Ow/Ob compared with women with HW, with increased alpha diversity and decreased predominance of Lactobacillus. Observed differences in the vaginal microbiome may partially explain differences in preterm birth and bacterial vaginosis risk between these populations.


Assuntos
Microbiota , Nascimento Prematuro , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Recém-Nascido , Obesidade , Sobrepeso , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa