Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Cell ; 175(5): 1244-1258.e26, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30454645

RESUMO

Cyclin-dependent kinase 9 (CDK9) promotes transcriptional elongation through RNAPII pause release. We now report that CDK9 is also essential for maintaining gene silencing at heterochromatic loci. Through a live cell drug screen with genetic confirmation, we discovered that CDK9 inhibition reactivates epigenetically silenced genes in cancer, leading to restored tumor suppressor gene expression, cell differentiation, and activation of endogenous retrovirus genes. CDK9 inhibition dephosphorylates the SWI/SNF protein BRG1, which contributes to gene reactivation. By optimization through gene expression, we developed a highly selective CDK9 inhibitor (MC180295, IC50 = 5 nM) that has broad anti-cancer activity in vitro and is effective in in vivo cancer models. Additionally, CDK9 inhibition sensitizes to the immune checkpoint inhibitor α-PD-1 in vivo, making it an excellent target for epigenetic therapy of cancer.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Animais , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Metilação de DNA , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Nucleic Acids Res ; 52(9): 4857-4871, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647050

RESUMO

CpG islands near promoters are normally unmethylated despite being surrounded by densely methylated regions. Aberrant hypermethylation of these CpG islands has been associated with the development of various human diseases. Although local genetic elements have been speculated to play a role in protecting promoters from methylation, only a limited number of methylation barriers have been identified. In this study, we conducted an integrated computational and experimental investigation of colorectal cancer methylomes. Our study revealed 610 genes with disrupted methylation barriers. Genomic sequences of these barriers shared a common 41-bp sequence motif (MB-41) that displayed homology to the chicken HS4 methylation barrier. Using the CDKN2A (P16) tumor suppressor gene promoter, we validated the protective function of MB-41 and showed that loss of such protection led to aberrant hypermethylation. Our findings highlight a novel sequence signature of cis-acting methylation barriers in the human genome that safeguard promoters from silencing.


Assuntos
Neoplasias Colorretais , Metilação de DNA , Regiões Promotoras Genéticas , Animais , Humanos , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Ilhas de CpG , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Genoma Humano , Motivos de Nucleotídeos , Galinhas , Estudo de Associação Genômica Ampla
3.
Blood ; 141(19): 2372-2389, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-36580665

RESUMO

Leukemia cells accumulate DNA damage, but altered DNA repair mechanisms protect them from apoptosis. We showed here that formaldehyde generated by serine/1-carbon cycle metabolism contributed to the accumulation of toxic DNA-protein crosslinks (DPCs) in leukemia cells, especially in driver clones harboring oncogenic tyrosine kinases (OTKs: FLT3(internal tandem duplication [ITD]), JAK2(V617F), BCR-ABL1). To counteract this effect, OTKs enhanced the expression of DNA polymerase theta (POLθ) via ERK1/2 serine/threonine kinase-dependent inhibition of c-CBL E3 ligase-mediated ubiquitination of POLθ and its proteasomal degradation. Overexpression of POLθ in OTK-positive cells resulted in the efficient repair of DPC-containing DNA double-strand breaks by POLθ-mediated end-joining. The transforming activities of OTKs and other leukemia-inducing oncogenes, especially of those causing the inhibition of BRCA1/2-mediated homologous recombination with and without concomitant inhibition of DNA-PK-dependent nonhomologous end-joining, was abrogated in Polq-/- murine bone marrow cells. Genetic and pharmacological targeting of POLθ polymerase and helicase activities revealed that both activities are promising targets in leukemia cells. Moreover, OTK inhibitors or DPC-inducing drug etoposide enhanced the antileukemia effect of POLθ inhibitor in vitro and in vivo. In conclusion, we demonstrated that POLθ plays an essential role in protecting leukemia cells from metabolically induced toxic DNA lesions triggered by formaldehyde, and it can be targeted to achieve a therapeutic effect.


Assuntos
Proteína BRCA1 , Dano ao DNA , Leucemia , Animais , Camundongos , Proteína BRCA2 , DNA/metabolismo , Leucemia/enzimologia , Leucemia/genética , DNA Polimerase teta
4.
Gastroenterology ; 164(6): 921-936.e1, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36764492

RESUMO

BACKGROUND & AIMS: Aberrant DNA methylation is frequent in colorectal cancer (CRC), but underlying mechanisms and pathologic consequences are poorly understood. METHODS: We disrupted active DNA demethylation genes Tet1 and/or Tdg from ApcMin mice and characterized the methylome and transcriptome of colonic adenomas. Data were compared to human colonic adenocarcinomas (COAD) in The Cancer Genome Atlas. RESULTS: There were increased numbers of small intestinal adenomas in ApcMin mice expressing the TdgN151A allele, whereas Tet1-deficient and Tet1/TdgN151A-double heterozygous ApcMin colonic adenomas were larger with features of erosion and invasion. We detected reduction in global DNA hypomethylation in colonic adenomas from Tet1- and Tdg-mutant ApcMin mice and hypermethylation of CpG islands in Tet1-mutant ApcMin adenomas. Up-regulation of inflammatory, immune, and interferon response genes was present in Tet1- and Tdg-mutant colonic adenomas compared to control ApcMin adenomas. This up-regulation was also seen in murine colonic organoids and human CRC lines infected with lentiviruses expressing TET1 or TDG short hairpin RNA. A 127-gene inflammatory signature separated colonic adenocarcinomas into 4 groups, closely aligned with their microsatellite or chromosomal instability and characterized by different levels of DNA methylation and DNMT1 expression that anticorrelated with TET1 expression. Tumors with the CpG island methylator phenotype (CIMP) had concerted high DNMT1/low TET1 expression. TET1 or TDG knockdown in CRC lines enhanced killing by natural killer cells. CONCLUSIONS: Our findings reveal a novel epigenetic regulation, linked to the type of genomic instability, by which TET1/TDG-mediated DNA demethylation decreases methylation levels and inflammatory/interferon/immune responses. CIMP in CRC is triggered by an imbalance of methylating activities over demethylating activities. These mice represent a model of CIMP CRC.


Assuntos
Adenocarcinoma , Adenoma , Neoplasias do Colo , Neoplasias Colorretais , Animais , Humanos , Camundongos , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenoma/genética , Adenoma/patologia , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ilhas de CpG/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Epigênese Genética , Oxigenases de Função Mista/genética , Fenótipo , Proteínas Proto-Oncogênicas/genética
5.
Mol Psychiatry ; 26(11): 7006-7019, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-31451749

RESUMO

Maternal history for sporadic Alzheimer's disease (AD) predisposes the offspring to the disease later in life. However, the mechanisms behind this phenomenon are still unknown. Lifestyle and nutrition can directly modulate susceptibility to AD. Herein we investigated whether gestational high fat diet influences the offspring susceptibility to AD later in life. Triple transgenic dams were administered high fat diet or regular chow throughout 3 weeks gestation. Offspring were fed regular chow throughout their life and tested for spatial learning and memory, brain amyloidosis, tau pathology, and synaptic function. Gestational high fat diet attenuated memory decline, synaptic dysfunction, amyloid-ß and tau neuropathology in the offspring by transcriptional regulation of BACE-1, CDK5, and tau gene expression via the upregulation of FOXP2 repressor. Gestational high fat diet protects offspring against the development of the AD phenotype. In utero dietary intervention could be implemented as preventative strategy against AD.


Assuntos
Doença de Alzheimer , Dieta Hiperlipídica , Transtornos da Memória , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Amiloidose/genética , Amiloidose/metabolismo , Amiloidose/fisiopatologia , Amiloidose/prevenção & controle , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Encefalopatias/genética , Encefalopatias/metabolismo , Encefalopatias/fisiopatologia , Encefalopatias/prevenção & controle , Modelos Animais de Doenças , Feminino , Fatores de Transcrição Forkhead/genética , Predisposição Genética para Doença/prevenção & controle , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Transtornos da Memória/prevenção & controle , Camundongos , Camundongos Transgênicos , Gravidez/genética , Gravidez/metabolismo , Proteínas Repressoras/genética , Sinapses/genética , Sinapses/metabolismo , Transcrição Gênica , Regulação para Cima , Proteínas tau/genética , Proteínas tau/metabolismo
6.
Breast Cancer Res ; 23(1): 58, 2021 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-34022936

RESUMO

BACKGROUND: DNA methylation alterations have similar patterns in normal aging tissue and in cancer. In this study, we investigated breast tissue-specific age-related DNA methylation alterations and used those methylation sites to identify individuals with outlier phenotypes. Outlier phenotype is identified by unsupervised anomaly detection algorithms and is defined by individuals who have normal tissue age-dependent DNA methylation levels that vary dramatically from the population mean. METHODS: We generated whole-genome DNA methylation profiles (GSE160233) on purified epithelial cells and used publicly available Infinium HumanMethylation 450K array datasets (TCGA, GSE88883, GSE69914, GSE101961, and GSE74214) for discovery and validation. RESULTS: We found that hypermethylation in normal breast tissue is the best predictor of hypermethylation in cancer. Using unsupervised anomaly detection approaches, we found that about 10% of the individuals (39/427) were outliers for DNA methylation from 6 DNA methylation datasets. We also found that there were significantly more outlier samples in normal-adjacent to cancer (24/139, 17.3%) than in normal samples (15/228, 5.2%). Additionally, we found significant differences between the predicted ages based on DNA methylation and the chronological ages among outliers and not-outliers. Additionally, we found that accelerated outliers (older predicted age) were more frequent in normal-adjacent to cancer (14/17, 82%) compared to normal samples from individuals without cancer (3/17, 18%). Furthermore, in matched samples, we found that the epigenome of the outliers in the pre-malignant tissue was as severely altered as in cancer. CONCLUSIONS: A subset of patients with breast cancer has severely altered epigenomes which are characterized by accelerated aging in their normal-appearing tissue. In the future, these DNA methylation sites should be studied further such as in cell-free DNA to determine their potential use as biomarkers for early detection of malignant transformation and preventive intervention in breast cancer.


Assuntos
Envelhecimento/patologia , Neoplasias da Mama/patologia , Mama/patologia , Envelhecimento/genética , Envelhecimento/metabolismo , Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Ilhas de CpG , Metilação de DNA , Epigenoma , Feminino , Humanos , Fenótipo
7.
Blood ; 132(1): 67-77, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784639

RESUMO

Mutations in FMS-like tyrosine kinase 3 (FLT3), such as internal tandem duplications (ITDs), can be found in up to 23% of patients with acute myeloid leukemia (AML) and confer a poor prognosis. Current treatment options for FLT3(ITD)-positive AMLs include genotoxic therapy and FLT3 inhibitors (FLT3i's), which are rarely curative. PARP1 inhibitors (PARP1i's) have been successfully applied to induce synthetic lethality in tumors harboring BRCA1/2 mutations and displaying homologous recombination (HR) deficiency. We show here that inhibition of FLT3(ITD) activity by the FLT3i AC220 caused downregulation of DNA repair proteins BRCA1, BRCA2, PALB2, RAD51, and LIG4, resulting in inhibition of 2 major DNA double-strand break (DSB) repair pathways, HR, and nonhomologous end-joining. PARP1i, olaparib, and BMN673 caused accumulation of lethal DSBs and cell death in AC220-treated FLT3(ITD)-positive leukemia cells, thus mimicking synthetic lethality. Moreover, the combination of FLT3i and PARP1i eliminated FLT3(ITD)-positive quiescent and proliferating leukemia stem cells, as well as leukemic progenitors, from human and mouse leukemia samples. Notably, the combination of AC220 and BMN673 significantly delayed disease onset and effectively reduced leukemia-initiating cells in an FLT3(ITD)-positive primary AML xenograft mouse model. In conclusion, we postulate that FLT3i-induced deficiencies in DSB repair pathways sensitize FLT3(ITD)-positive AML cells to synthetic lethality triggered by PARP1i's. Therefore, FLT3(ITD) could be used as a precision medicine marker for identifying AML patients that may benefit from a therapeutic regimen combining FLT3 and PARP1i's.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Reparo do DNA/efeitos dos fármacos , Leucemia Mieloide Aguda , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Benzotiazóis/farmacologia , Linhagem Celular Tumoral , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Mutação , Compostos de Fenilureia/farmacologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/genética
8.
J Neurosci ; 38(27): 6090-6101, 2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29875269

RESUMO

Nerve injury-induced hyperactivity of primary sensory neurons in the dorsal root ganglion (DRG) contributes to chronic pain development, but the underlying epigenetic mechanisms remain poorly understood. Here we determined genome-wide changes in DNA methylation in the nervous system in neuropathic pain. Spinal nerve ligation (SNL), but not paclitaxel treatment, in male Sprague Dawley rats induced a consistent low-level hypomethylation in the CpG sites in the DRG during the acute and chronic phases of neuropathic pain. DNA methylation remodeling in the DRG occurred early after SNL and persisted for at least 3 weeks. SNL caused DNA methylation changes at 8% of CpG sites with prevailing hypomethylation outside of CpG islands, in introns, intergenic regions, and repetitive sequences. In contrast, SNL caused more gains of methylation in the spinal cord and prefrontal cortex. The DNA methylation changes in the injured DRGs recapitulated developmental reprogramming at the neonatal stage. Methylation reprogramming was correlated with increased gene expression variability. A diet deficient in methyl donors induced hypomethylation and pain hypersensitivity. Intrathecal administration of the DNA methyltransferase inhibitor RG108 caused long-lasting pain hypersensitivity. DNA methylation reprogramming in the DRG thus contributes to nerve injury-induced chronic pain. Restoring DNA methylation may represent a new therapeutic approach to treat neuropathic pain.SIGNIFICANCE STATEMENT Epigenetic mechanisms are critically involved in the transition from acute to chronic pain after nerve injury. However, genome-wide changes in DNA methylation in the nervous system and their roles in neuropathic pain development remain unclear. Here we used digital restriction enzyme analysis of methylation to quantitatively determine genome-wide DNA methylation changes caused by nerve injury. We showed that nerve injury caused DNA methylation changes at 8% of CpG sites with prevailing hypomethylation outside of CpG islands in the dorsal root ganglion. Reducing DNA methylation induced pain hypersensitivity, whereas increasing DNA methylation attenuated neuropathic pain. These findings extend our understanding of the epigenetic mechanism of chronic neuropathic pain and suggest new strategies to treat nerve injury-induced chronic pain.


Assuntos
Dor Crônica/metabolismo , Metilação de DNA/fisiologia , Gânglios Espinais/metabolismo , Neuralgia/metabolismo , Animais , Dor Crônica/genética , Epigênese Genética/genética , Gânglios Espinais/lesões , Masculino , Neuralgia/genética , Ratos , Ratos Sprague-Dawley
9.
Nucleic Acids Res ; 45(14): 8269-8281, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28531272

RESUMO

TET1 oxidizes methylated cytosine into 5-hydroxymethylcytosine (5hmC), resulting in regulation of DNA methylation and gene expression. Full length TET1 (TET1FL) has a CXXC domain that binds to unmethylated CpG islands (CGIs). This CXXC domain allows TET1 to protect CGIs from aberrant methylation, but it also limits its ability to regulate genes outside of CGIs. Here, we report a novel isoform of TET1 (TET1ALT) that has a unique transcription start site from an alternate promoter in intron 2, yielding a protein with a unique translation start site. Importantly, TET1ALT lacks the CXXC domain but retains the catalytic domain. TET1ALT is repressed in embryonic stem cells (ESCs) but becomes activated in embryonic and adult tissues while TET1FL is expressed in ESCs, but repressed in adult tissues. Overexpression of TET1ALT shows production of 5hmC with distinct (and weaker) effects on DNA methylation or gene expression when compared to TET1FL. TET1ALT is aberrantly activated in multiple cancer types including breast, uterine and glioblastoma, and TET1 activation is associated with a worse overall survival in breast, uterine and ovarian cancers. Our data suggest that the predominantly activated isoform of TET1 in cancer cells does not protect from CGI methylation and likely mediates dynamic site-specific demethylation outside of CGIs.


Assuntos
Regulação Neoplásica da Expressão Gênica , Oxigenases de Função Mista/genética , Neoplasias/genética , Proteínas Proto-Oncogênicas/genética , Animais , Sítios de Ligação/genética , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Ilhas de CpG/genética , Metilação de DNA , Células-Tronco Embrionárias/metabolismo , Células HEK293 , Células HeLa , Humanos , Células K562 , Células MCF-7 , Masculino , Camundongos Endogâmicos C57BL , Oxigenases de Função Mista/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo
10.
Genome Res ; 24(4): 580-91, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24414704

RESUMO

The myelodysplastic syndrome (MDS) is a clonal hematologic disorder that frequently evolves to acute myeloid leukemia (AML). Its pathogenesis remains unclear, but mutations in epigenetic modifiers are common and the disease often responds to DNA methylation inhibitors. We analyzed DNA methylation in the bone marrow and spleen in two mouse models of MDS/AML, the NUP98-HOXD13 (NHD13) mouse and the RUNX1 mutant mouse model. Methylation array analysis showed an average of 512/3445 (14.9%) genes hypermethylated in NHD13 MDS, and 331 (9.6%) genes hypermethylated in RUNX1 MDS. Thirty-two percent of genes in common between the two models (2/3 NHD13 mice and 2/3 RUNX1 mice) were also hypermethylated in at least two of 19 human MDS samples. Detailed analysis of 41 genes in mice showed progressive drift in DNA methylation from young to old normal bone marrow and spleen; to MDS, where we detected accelerated age-related methylation; and finally to AML, which markedly extends DNA methylation abnormalities. Most of these genes showed similar patterns in human MDS and AML. Repeat element hypomethylation was rare in MDS but marked the transition to AML in some cases. Our data show consistency in patterns of aberrant DNA methylation in human and mouse MDS and suggest that epigenetically, MDS displays an accelerated aging phenotype.


Assuntos
Metilação de DNA/genética , Epigênese Genética/genética , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/genética , Animais , Células da Medula Óssea , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Modelos Animais de Doenças , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Síndromes Mielodisplásicas/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética
11.
Toxicol Appl Pharmacol ; 291: 84-96, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26712470

RESUMO

Modified epigenetic programming early in life is proposed to underlie the development of an adverse adult phenotype, known as the Developmental Origins of Health and Disease (DOHaD) concept. Several environmental contaminants have been implicated as modifying factors of the developing epigenome. This underlines the need to investigate this newly recognized toxicological risk and systematically screen for the epigenome modifying potential of compounds. In this study, we examined the applicability of the zebrafish embryo as a screening model for DNA methylation modifications. Embryos were exposed from 0 to 72 h post fertilization (hpf) to bisphenol-A (BPA), diethylstilbestrol, 17α-ethynylestradiol, nickel, cadmium, tributyltin, arsenite, perfluoroctanoic acid, valproic acid, flusilazole, 5-azacytidine (5AC) in subtoxic concentrations. Both global and site-specific methylation was examined. Global methylation was only affected by 5AC. Genome wide locus-specific analysis was performed for BPA exposed embryos using Digital Restriction Enzyme Analysis of Methylation (DREAM), which showed minimal wide scale effects on the genome, whereas potential informative markers were not confirmed by pyrosequencing. Site-specific methylation was examined in the promoter regions of three selected genes vasa, vtg1 and cyp19a2, of which vasa (ddx4) was the most responsive. This analysis distinguished estrogenic compounds from metals by direction and sensitivity of the effect compared to embryotoxicity. In conclusion, the zebrafish embryo is a potential screening tool to examine DNA methylation modifications after xenobiotic exposure. The next step is to examine the adult phenotype of exposed embryos and to analyze molecular mechanisms that potentially link epigenetic effects and altered phenotypes, to support the DOHaD hypothesis.


Assuntos
Metilação de DNA/efeitos dos fármacos , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Compostos Benzidrílicos/toxicidade , Metilação de DNA/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Embrião não Mamífero , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/fisiologia , Metais Pesados/toxicidade , Fenóis/toxicidade , Esteroides/toxicidade , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/biossíntese
12.
Nucleic Acids Res ; 42(11): 6956-71, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24875481

RESUMO

TET1 is a 5-methylcytosine dioxygenase and its DNA demethylating activity has been implicated in pluripotency and reprogramming. However, the precise role of TET1 in DNA methylation regulation outside of developmental reprogramming is still unclear. Here, we show that overexpression of the TET1 catalytic domain but not full length TET1 (TET1-FL) induces massive global DNA demethylation in differentiated cells. Genome-wide mapping reveals that 5-hydroxymethylcytosine production by TET1-FL is inhibited as DNA methylation increases, which can be explained by the preferential binding of TET1-FL to unmethylated CpG islands (CGIs) through its CXXC domain. TET1-FL specifically accumulates 5-hydroxymethylcytosine at the edges of hypomethylated CGIs, while knockdown of endogenous TET1 induces methylation spreading from methylated edges into hypomethylated CGIs. We also found that gene expression changes after TET1-FL overexpression are relatively small and independent of its dioxygenase function. Thus, our results identify TET1 as a maintenance DNA demethylase that does not purposely decrease methylation levels, but specifically prevents aberrant methylation spreading into CGIs in differentiated cells.


Assuntos
Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , 5-Metilcitosina/análogos & derivados , Domínio Catalítico , Diferenciação Celular/genética , Ilhas de CpG , Citosina/análogos & derivados , Citosina/análise , Citosina/metabolismo , Proteínas de Ligação a DNA/química , Dioxigenases/química , Células HEK293 , Humanos , Oxigenases de Função Mista , Proteínas Proto-Oncogênicas/química , Transcrição Gênica
13.
Gastroenterology ; 146(2): 530-38.e5, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24211491

RESUMO

BACKGROUND & AIMS: Subgroups of colorectal carcinomas (CRCs) characterized by DNA methylation anomalies are termed CpG island methylator phenotype (CIMP)1, CIMP2, or CIMP-negative. The pathogenesis of CIMP1 colorectal carcinomas, and their effects on patients' prognoses and responses to treatment, differ from those of other CRCs. We sought to identify genetic somatic alterations associated with CIMP1 CRCs. METHODS: We examined genomic DNA samples from 100 primary CRCs, 10 adenomas, and adjacent normal-appearing mucosae from patients undergoing surgery or colonoscopy at 3 tertiary medical centers. We performed exome sequencing of 16 colorectal tumors and their adjacent normal tissues. Extensive comparison with known somatic alterations in CRCs allowed segregation of CIMP1-exclusive alterations. The prevalence of mutations in selected genes was determined from an independent cohort. RESULTS: We found that genes that regulate chromatin were mutated in CIMP1 CRCs; the highest rates of mutation were observed in CHD7 and CHD8, which encode members of the chromodomain helicase/adenosine triphosphate-dependent chromatin remodeling family. Somatic mutations in these 2 genes were detected in 5 of 9 CIMP1 CRCs. A prevalence screen showed that nonsilencing mutations in CHD7 and CHD8 occurred significantly more frequently in CIMP1 tumors (18 of 42 [43%]) than in CIMP2 (3 of 34 [9%]; P < .01) or CIMP-negative tumors (2 of 34 [6%]; P < .001). CIMP1 markers had increased binding by CHD7, compared with all genes. Genes altered in patients with CHARGE syndrome (congenital malformations involving the central nervous system, eye, ear, nose, and mediastinal organs) who had CHD7 mutations were also altered in CRCs with mutations in CHD7. CONCLUSIONS: Aberrations in chromatin remodeling could contribute to the development of CIMP1 CRCs. A better understanding of the biological determinants of CRCs can be achieved when these tumors are categorized according to their epigenetic status.


Assuntos
Cromatina , Neoplasias Colorretais/genética , Ilhas de CpG , DNA Helicases/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Mutação , Fatores de Transcrição/genética , Adenoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Exoma , Feminino , Inativação Gênica , Marcadores Genéticos , Humanos , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Fenótipo , Análise de Sequência de DNA
14.
Blood ; 119(13): e100-9, 2012 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-22286197

RESUMO

Clonality can be established by a lack of mosaicism in a female because of random inactivation of either the maternal or paternal X chromosome early in embryogenesis. The methylation status of CpG sites close to the trinucleotide repeats in exon 1 of the human androgen receptor (AR) X chromosome gene assay (HUMARA) has been used to determine clonality. This HUMARA at times indicated clonal hematopoiesis in healthy elderly women, thus precluding its applicability. We used a clonality assay based on quantitative expression of polymorphic X chromosome genes (qTCA) and found no evidence of clonal hematopoiesis in healthy nonanemic elderly persons. We found instances of discordance between HUMARA results and those obtained by pyrosequencing and qTCA methods, as well as by directly quantifying AR gene expression. To determine the basis of this discrepancy we examined the methylation pattern of the AR locus subject to HUMARA. Notably, we found the extent of DNA methylation to be highly variable at the AR gene in granulocytes of persons with discordant results and also in erythroid burst-forming unit colonies but not in those with clonal hematopoiesis. These data provide the molecular basis of incomplete correlation with the pattern of DNA methylation of this X chromosome AR gene locus.


Assuntos
Metilação de DNA , Receptores Androgênicos/genética , Inativação do Cromossomo X/genética , Adulto , Estudos de Casos e Controles , Cromossomos Humanos X/genética , Cromossomos Humanos X/metabolismo , Evolução Clonal/genética , Metilação de DNA/fisiologia , Feminino , Frequência do Gene , Loci Gênicos , Genótipo , Humanos , Janus Quinase 2/genética , Masculino , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Polimorfismo Genético , Receptores Androgênicos/metabolismo , Análise de Sequência de DNA/métodos , Repetições de Trinucleotídeos/genética , Inativação do Cromossomo X/fisiologia
15.
Nat Med ; 13(1): 78-83, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17159988

RESUMO

Interstitial loss of all or part of the long arm of chromosome 5, or del(5q), is a frequent clonal chromosomal abnormality in human myelodysplastic syndrome (MDS, a preleukemic disorder) and acute myeloid leukemia (AML), and is thought to contribute to the pathogenesis of these diseases by deleting one or more tumor-suppressor genes. Although a major commonly deleted region (CDR) has been delineated on chromosome band 5q31.1 (refs. 3-7), attempts to identify tumor suppressors within this band have been unsuccessful. We focused our analysis of gene expression on RNA from primitive leukemia-initiating cells, which harbor 5q deletions, and analyzed 12 genes within the CDR that are expressed by normal hematopoietic stem cells. Here we show that the gene encoding alpha-catenin (CTNNA1) is expressed at a much lower level in leukemia-initiating stem cells from individuals with AML or MDS with a 5q deletion than in individuals with MDS or AML lacking a 5q deletion or in normal hematopoietic stem cells. Analysis of HL-60 cells, a myeloid leukemia line with deletion of the 5q31 region, showed that the CTNNA1 promoter of the retained allele is suppressed by both methylation and histone deacetylation. Restoration of CTNNA1 expression in HL-60 cells resulted in reduced proliferation and apoptotic cell death. Thus, loss of expression of the alpha-catenin tumor suppressor in hematopoietic stem cells may provide a growth advantage that contributes to human MDS or AML with del(5q).


Assuntos
Transformação Celular Neoplásica , Deleção Cromossômica , Cromossomos Humanos Par 5/genética , Células Progenitoras Mieloides/patologia , alfa Catenina/genética , Doença Aguda , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HL-60 , Humanos , Ácidos Hidroxâmicos/farmacologia , Hibridização in Situ Fluorescente/métodos , Células K562 , Leucemia Mieloide/sangue , Leucemia Mieloide/genética , Leucemia Mieloide/patologia , Mutação , Síndromes Mielodisplásicas/sangue , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Células Progenitoras Mieloides/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Células U937 , alfa Catenina/metabolismo
16.
Gut Microbes ; 16(1): 2363012, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860458

RESUMO

The intestinal microbiota is an important environmental factor implicated in CRC development. Intriguingly, modulation of DNA methylation by gut microbiota has been reported in preclinical models, although the relationship between tumor-infiltrating bacteria and CIMP status is currently unexplored. In this study, we investigated tumor-associated bacteria in 203 CRC tumor cases and validated the findings using The Cancer Genome Atlas datasets. We assessed the abundance of Bacteroides fragilis, Escherichia coli, Fusobacterium nucleatum, and Klebsiella pneumoniae through qPCR analysis and observed enrichment of all four bacterial species in CRC samples. Notably, except for E. coli, all exhibited significant enrichment in cases of CIMP. This enrichment was primarily driven by a subset of cases distinguished by high levels of these bacteria, which we labeled as "Superhigh". The bacterial Superhigh status showed a significant association with CIMP (odds ratio 3.1, p-value = 0.013) and with MLH1 methylation (odds ratio 4.2, p-value = 0.0025). In TCGA CRC cases (393 tumor and 45 adj. normal), bacterial taxa information was extracted from non-human whole exome sequencing reads, and the bacterial Superhigh status was similarly associated with CIMP (odds ratio 2.9, p < 0.001) and MLH1 methylation (odds ratio 3.5, p < 0.001). Finally, 16S ribosomal RNA gene sequencing revealed high enrichment of Bergeyella spp. C. concisus, and F. canifelinum in CIMP-Positive tumor cases. Our findings highlight that specific bacterial taxa may influence DNA methylation, particularly in CpG islands, and contribute to the development and progression of CIMP in colorectal cancer.


Assuntos
Bactérias , Neoplasias Colorretais , Ilhas de CpG , Metilação de DNA , Microbioma Gastrointestinal , Humanos , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/genética , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Feminino , Masculino , Pessoa de Meia-Idade , Bacteroides fragilis/genética , Bacteroides fragilis/isolamento & purificação , Idoso , Fenótipo
17.
Clin Epigenetics ; 16(1): 3, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172923

RESUMO

BACKGROUND: Inhibition of cyclin-dependent kinase 9 (CDK9), a novel epigenetic target in cancer, can reactivate epigenetically silenced genes in cancer by dephosphorylating the SWI/SNF chromatin remodeler BRG1. Here, we characterized the anti-tumor efficacy of MC180295, a newly developed CDK9 inhibitor. METHODS: In this study, we explored the pharmacokinetics of MC180295 in mice and rats, and tested the anti-tumor efficacy of MC180295, and its enantiomers, in multiple cancer cell lines and mouse models. We also combined CDK9 inhibition with a DNA methyltransferase (DNMT) inhibitor, decitabine, in multiple mouse models, and tested MC180295 dependence on T cells. Drug toxicity was measured by checking body weights and complete blood counts. RESULTS: MC180295 had high specificity for CDK9 and high potency against multiple neoplastic cell lines (median IC50 of 171 nM in 46 cell lines representing 6 different malignancies), with the highest potency seen in AML cell lines derived from patients with MLL translocations. MC180295 is a racemic mixture of two enantiomers, MC180379 and MC180380, with MC180380 showing higher potency in a live-cell epigenetic assay. Both MC180295 and MC180380 showed efficacy in in vivo AML and colon cancer xenograft models, and significant synergy with decitabine in both cancer models. Lastly, we found that CDK9 inhibition-mediated anti-tumoral effects were partially dependent on CD8 + T cells in vivo, indicating a significant immune component to the response. CONCLUSIONS: MC180380, an inhibitor of cyclin-dependent kinase 9 (CDK9), is an efficacious anti-cancer agent worth advancing further toward clinical use.


Assuntos
Quinase 9 Dependente de Ciclina , Leucemia Mieloide Aguda , Humanos , Camundongos , Ratos , Animais , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Decitabina/farmacologia , Metilação de DNA , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/genética , Apoptose
18.
J Vet Intern Med ; 38(1): 316-325, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38115210

RESUMO

BACKGROUND: DNA methylation analysis might identify prognostic CpG sites in CHOP-treated dogs with multicentric high-grade B-cell lymphoma (MHGL) with heterogenous prognosis. OBJECTIVE: To identify prognostic CpG sites of MHGL through genome-wide DNA methylation analysis with pyrosequencing validation. ANIMALS: Test group: 24 dogs. Validation group: 100 dogs. All client-owned dogs were diagnosed with MHGL and treated with CHOP chemotherapy. METHODS: Cohort study. DNA was extracted from lymph node samples obtained via FNA. Genome-wide DNA methylation analysis using Digital Restriction Enzyme Analysis of Methylation (DREAM) was performed on the test group to identify differentially methylated CpG sites (DMCs). Bisulfite pyrosequencing was used to measure methylation status of candidate DMCs in the validation group. Median survival times (MST) were analyzed using Kaplan-Meier (log-rank) product limit method. RESULTS: DREAM analyzed 101 576 CpG sites. Hierarchical clustering of 16 262 CpG sites in test group identified group with better prognosis (MST = 55-477 days vs 10-301 days, P = .007). Volcano plot identified 1371 differentially methylated CpG sites (DMCs). DMC near the genes of FAM213A (DMC-F) and PHLPP1 (DMC-P) were selected as candidates. Bisulfite-pyrosequencing performed on validation group showed group with methylation level of DMC-F < 40% had favorable prognosis (MST = 11-1072 days vs 8-1792 days, P = .01), whereas group with the methylation level combination of DMC-F < 40% plus DMC-P < 10% had excellent prognosis (MST = 18-1072 days vs 8-1792 days, P = .009). CONCLUSION AND CLINICAL IMPORTANCE: Methylation status of prognostic CpG sites delineate canine MGHL cases with longer MST, providing owners with information on expectations of potential improved treatment outcomes.


Assuntos
Doenças do Cão , Linfoma de Células B , Sulfitos , Humanos , Cães , Animais , Metilação de DNA , Prognóstico , Estudos de Coortes , Linfoma de Células B/genética , Linfoma de Células B/veterinária , Doenças do Cão/tratamento farmacológico , Doenças do Cão/genética
19.
Genome Res ; 20(10): 1369-82, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20716667

RESUMO

Epigenetic silencing plays an important role in cancer development. An attractive hypothesis is that local DNA features may participate in differential predisposition to gene hypermethylation. We found that, compared with methylation-resistant genes, methylation-prone genes have a lower frequency of SINE and LINE retrotransposons near their transcription start site. In several large testing sets, this distribution was highly predictive of promoter methylation. Genome-wide analysis showed that 22% of human genes were predicted to be methylation-prone in cancer; these tended to be genes that are down-regulated in cancer and that function in developmental processes. Moreover, retrotransposon distribution marks a larger fraction of methylation-prone genes compared to Polycomb group protein (PcG) marking in embryonic stem cells; indeed, PcG marking and our predictive model based on retrotransposon frequency appear to be correlated but also complementary. In summary, our data indicate that retrotransposon elements, which are widespread in our genome, are strongly associated with gene promoter DNA methylation in cancer and may in fact play a role in influencing epigenetic regulation in normal and abnormal physiological states.


Assuntos
Metilação de DNA , Neoplasias/genética , Retroelementos/genética , Linhagem Celular Tumoral , Epigenômica , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Genoma Humano , Humanos , Leucemia Mieloide Aguda , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária
20.
Nat Genet ; 32(4): 614-21, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12415268

RESUMO

Chuvash polycythemia is an autosomal recessive disorder that is endemic to the mid-Volga River region. We previously mapped the locus associated with Chuvash polycythemia to chromosome 3p25. The gene associated with von Hippel-Lindau syndrome, VHL, maps to this region, and homozygosity with respect to a C-->T missense mutation in VHL, causing an arginine-to-tryptophan change at amino-acid residue 200 (Arg200Trp), was identified in all individuals affected with Chuvash polycythemia. The protein VHL modulates the ubiquitination and subsequent destruction of hypoxia-inducible factor 1, subunit alpha (HIF1alpha). Our data indicate that the Arg200Trp substitution impairs the interaction of VHL with HIF1alpha, reducing the rate of degradation of HIF1alpha and resulting in increased expression of downstream target genes including EPO (encoding erythropoietin), SLC2A1 (also known as GLUT1, encoding solute carrier family 2 (facilitated glucose transporter), member 1), TF (encoding transferrin), TFRC (encoding transferrin receptor (p90, CD71)) and VEGF (encoding vascular endothelial growth factor).


Assuntos
Oxigênio/metabolismo , Policitemia/etiologia , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases , Adolescente , Adulto , Alelos , Substituição de Aminoácidos , Células Cultivadas , Cromossomos Humanos Par 3 , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Eritropoetina/sangue , Eritropoetina/genética , Feminino , Regulação da Expressão Gênica , Frequência do Gene , Mutação em Linhagem Germinativa , Haplótipos , Homeostase , Homozigoto , Humanos , Fator 1 Induzível por Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Ligases/genética , Ligases/metabolismo , Masculino , Mutação de Sentido Incorreto , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Linhagem , Policitemia/genética , Policitemia/metabolismo , Ligação Proteica , Receptores da Transferrina/sangue , Receptores da Transferrina/genética , Federação Russa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transferrina/análise , Transferrina/genética , Células Tumorais Cultivadas , Ubiquitinas/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau , Doença de von Hippel-Lindau/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa