Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Neuroimage ; 174: 364-379, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29518566

RESUMO

Methamphetamine (meth), and other psychostimulants such as cocaine, present a persistent problem for society with chronic users being highly prone to relapse. We show, in a chronic methamphetamine administration model, that discontinuation of drug for more than a week produces much larger changes in overall meth-induced brain connectivity and cerebral blood volume (CBV) response than changes that occur immediately following meth administration. Areas showing the largest changes were hippocampal, limbic striatum and sensorimotor cortical regions as well as brain stem areas including the pedunculopontine tegmentum (PPTg) and pontine nuclei - regions known to be important in mediating reinstatement of drug-taking after abstinence. These changes occur concomitantly with behavioral sensitization and appear to be mediated through increases in dopamine D1 and D3 and decreases in D2 receptor protein and mRNA expression. We further identify a novel region of dorsal caudate/putamen, with a low density of calbindin neurons, that has an opposite hemodynamic response to meth than the rest of the caudate/putamen and accumbens and shows very strong correlation with dorsal CA1 and CA3 hippocampus. This correlation switches following meth abstinence from CA1/CA3 to strong connections with ventral hippocampus (ventral subiculum) and nucleus accumbens. These data provide novel evidence for temporal alterations in brain connectivity where chronic meth can subvert hippocampal - striatal interactions from cognitive control regions to regions that mediate drug reinstatement. Our results also demonstrate that the signs and magnitudes of the induced CBV changes following challenge with meth or a D3-preferring agonist are a complementary read out of the relative changes that occur in D1, D2 and D3 receptors using protein or mRNA levels.


Assuntos
Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Metanfetamina/administração & dosagem , Córtex Sensório-Motor/efeitos dos fármacos , Córtex Sensório-Motor/fisiologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Mapeamento Encefálico , Volume Sanguíneo Cerebral , Condicionamento Clássico , Corpo Estriado/irrigação sanguínea , Comportamento de Procura de Droga , Hipocampo/irrigação sanguínea , Locomoção/efeitos dos fármacos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/irrigação sanguínea , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Ratos Sprague-Dawley , Córtex Sensório-Motor/irrigação sanguínea
2.
Neuroimage ; 75: 46-57, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23466936

RESUMO

This report describes a multi-receptor physiological model of the fMRI temporal response and signal magnitude evoked by drugs that elevate synaptic dopamine in basal ganglia. The model is formulated as a summation of dopamine's effects at D1-like and D2-like receptor families, which produce functional excitation and inhibition, respectively, as measured by molecular indicators like adenylate cyclase or neuroimaging techniques like fMRI. Functional effects within the model are described in terms of relative changes in receptor occupancies scaled by receptor densities and neuro-vascular coupling constants. Using literature parameters, the model reconciles many discrepant observations and interpretations of pre-clinical data. Additionally, we present data showing that amphetamine stimulation produces fMRI inhibition at low doses and a biphasic response at higher doses in the basal ganglia of non-human primates (NHP), in agreement with model predictions based upon the respective levels of evoked dopamine. Because information about dopamine release is required to inform the fMRI model, we simultaneously acquired PET (11)C-raclopride data in several studies to evaluate the relationship between raclopride displacement and assumptions about dopamine release. At high levels of dopamine release, results suggest that refinements of the model will be required to consistently describe the PET and fMRI data. Overall, the remarkable success of the model in describing a wide range of preclinical fMRI data indicate that this approach will be useful for guiding the design and analysis of basic science and clinical investigations and for interpreting the functional consequences of dopaminergic stimulation in normal subjects and in populations with dopaminergic neuroadaptations.


Assuntos
Gânglios da Base/metabolismo , Dopamina/metabolismo , Imageamento por Ressonância Magnética , Modelos Neurológicos , Animais , Gânglios da Base/efeitos dos fármacos , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Humanos
3.
Neuropsychopharmacology ; 48(5): 797-805, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35995971

RESUMO

Glucose metabolism is impaired in brain aging and several neurological conditions. Beneficial effects of ketones have been reported in the context of protecting the aging brain, however, their neurophysiological effect is still largely uncharacterized, hurdling their development as a valid therapeutic option. In this report, we investigate the neurochemical effect of the acute administration of a ketone d-beta-hydroxybutyrate (D-ßHB) monoester in fasting healthy participants with ultrahigh-field proton magnetic resonance spectroscopy (MRS). In two within-subject metabolic intervention experiments, 7 T MRS data were obtained in fasting healthy participants (1) in the anterior cingulate cortex pre- and post-administration of D-ßHB (N = 16), and (2) in the posterior cingulate cortex pre- and post-administration of D-ßHB compared to active control glucose (N = 26). Effect of age and blood levels of D-ßHB and glucose were used to further explore the effect of D-ßHB and glucose on MRS metabolites. Results show that levels of GABA and Glu were significantly reduced in the anterior and posterior cortices after administration of D-ßHB. Importantly, the effect was specific to D-ßHB and not observed after administration of glucose. The magnitude of the effect on GABA and Glu was significantly predicted by older age and by elevation of blood levels of D-ßHB. Together, our results show that administration of ketones acutely impacts main inhibitory and excitatory transmitters in the whole fasting cortex, compared to normal energy substrate glucose. Critically, such effects have an increased magnitude in older age, suggesting an increased sensitivity to ketones with brain aging.


Assuntos
Ácido Glutâmico , Giro do Cíngulo , Humanos , Adulto , Ácido 3-Hidroxibutírico/farmacologia , Ácido Glutâmico/metabolismo , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/metabolismo , Cetonas , Espectroscopia de Prótons por Ressonância Magnética , Glucose , Ácido gama-Aminobutírico
4.
Neuroimage ; 62(2): 1072-85, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22495143

RESUMO

The technique of functional magnetic resonance (fMRI), using various cognitive, motor and sensory stimuli has led to a revolution in the ability to map brain function. Drugs can also be used as stimuli to elicit an hemodynamic change. Stimulation with a pharmaceutical has a number of very different consequences compared to user controllable stimuli, most importantly in the time course of stimulus and response that is not, in general, controllable by the experimenter. Therefore, this type of experiment has been termed pharmacologic MRI (phMRI). The use of a drug stimulus leads to a number of interesting possibilities compared to conventional fMRI. Using receptor specific ligands one can characterize brain circuitry specific to neurotransmitter systems. The possibility exists to measure parameters reflecting neurotransmitter release and binding associated with the pharmacokinetics and/or the pharmacodynamics of drugs. There is also the ability to measure up- and down-regulation of receptors in specific disease states. phMRI can be characterized as a molecular imaging technique using the natural hemodynamic transduction related to neuro-receptor stimulus. This provides a coupling mechanism with very high sensitivity that can rival positron emission tomography (PET) in some circumstances. The large numbers of molecules available, that do not require a radio-label, means that phMRI becomes a very useful tool for performing drug discovery. Data and arguments will be presented to show that phMRI can provide information on neuro-receptor signaling and function that complements the static picture generated by PET studies of receptor numbers and occupancies.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Imageamento por Ressonância Magnética/métodos , Animais , Encéfalo/fisiologia , Humanos
5.
Front Neuroimaging ; 1: 947526, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37555179

RESUMO

Postmortem studies are currently considered a gold standard for investigating brain structure at the cellular level. To investigate cellular changes in the context of human development, aging, or disease treatment, non-invasive in-vivo imaging methods such as diffusion MRI (dMRI) are needed. However, dMRI measures are only indirect measures and require validation in gray matter (GM) in the context of their sensitivity to the underlying cytoarchitecture, which has been lacking. Therefore, in this study we conducted direct comparisons between in-vivo dMRI measures and histology acquired from the same four rhesus monkeys. Average and heterogeneity of fractional anisotropy and trace from diffusion tensor imaging and mean squared displacement (MSD) and return-to-origin-probability from biexponential model were calculated in nine cytoarchitectonically different GM regions using dMRI data. DMRI measures were compared with corresponding histology measures of regional average and heterogeneity in cell area density. Results show that both average and heterogeneity in trace and MSD measures are sensitive to the underlying cytoarchitecture (cell area density) and capture different aspects of cell composition and organization. Trace and MSD thus would prove valuable as non-invasive imaging biomarkers in future studies investigating GM cytoarchitectural changes related to development and aging as well as abnormal cellular pathologies in clinical studies.

6.
Eur J Neurosci ; 34(5): 800-15, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21896062

RESUMO

Chronic use of cocaine is associated with lasting alterations in brain metabolism, circuitry, and receptor properties. We used neuroimaging with pharmacological magnetic resonance imaging to assess alterations in response to cocaine (0.5 mg/kg) in animals trained to self-administer cocaine on a fixed-ratio 5 schedule of reinforcement, as well as saline-yoked controls, after 28 days of cocaine abstinence. We fitted the cerebral blood volume (CBV) curves for full-width half-maximum (FWHM) as well as peak CBV response. There were significant increases in the FWHM of the response curves in the cocaine self-administering (SA) animals as compared with saline-yoked controls in the medial prefrontal cortex (mPFC) and the caudate/putamen (CPu), and increases in peak CBV in the M1 motor cortex, CPu, and pedunculopontine tegmental nucleus. Functional connectivity analysis showed increased correlations in the cocaine SA rats upon acute cocaine challenge, especially in the S1, mPFC, and thalamus. As D3 receptor expression is postulated to increase following chronic cocaine administration, we also examined the response to 0.2 mg/kg of the D3-preferring agonist 7-hydroxy-N,N-di-n-propyl-2-aminotetralin (7-OHDPAT). Cocaine SA animals showed a decreased overall CBV response to this drug, except in the globus pallidus. The hypothalamus showed a negative CBV change in response to cocaine challenge, similar to that noted with the D3 agonist, and showed a smaller response in the cocaine SA animals than in the controls. Given the good coupling of cerebral hemodynamics with dopamine dynamics previously observed with pharmacological magnetic resonance imaging, these data suggest that increased persistence of dopamine in the prefrontal cortex may be responsible for some of the behavioral alterations observed subsequent to chronic cocaine use.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/efeitos dos fármacos , Cocaína/administração & dosagem , Cocaína/farmacologia , Sistema Límbico/anatomia & histologia , Sistema Límbico/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Animais , Encéfalo/fisiologia , Circulação Cerebrovascular/efeitos dos fármacos , Agonistas de Dopamina/farmacologia , Inibidores da Captação de Dopamina/administração & dosagem , Inibidores da Captação de Dopamina/farmacologia , Humanos , Sistema Límbico/fisiologia , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Ratos , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional/efeitos dos fármacos , Reforço Psicológico , Autoadministração , Tetra-Hidronaftalenos/farmacologia
7.
Dev Neurosci ; 32(2): 125-38, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20523024

RESUMO

Characterization of the ontogeny of the cerebral dopaminergic system is crucial for gaining a greater understanding of normal brain development and its alterations in response to drugs of abuse or conditions such as attention-deficit hyperactivity disorder. Pharmacological MRI (phMRI) was used to determine the response to dopamine transporter (DAT) blockers cocaine and methylphenidate (MPH), the dopamine releaser D-amphetamine (AMPH), the selective D1 agonist dihydrexidine, and the D2/D3 agonist quinpirole in young (<30 days old) and adult (>60 days old) rats. In adult rats, cocaine (0.5 mg/kg i.v.) or MPH (2 mg/kg) induced primarily positive cerebral blood volume (rCBV) changes in the dopaminergic circuitry, but negative rCBV changes in the young animals. Microdialysis measurements in the striatum showed that young rats have a smaller increase in extracellular dopamine in response to cocaine than adults. The young rats showed little rCBV response to the selective D1 agonist dihydrexidine in contrast to robust rCBV increases observed in the adults, whereas there was a similar negative rCBV response in the young and adult rats to the D2 agonist quinpirole. We also performed a meta-analysis of literature data on the development of D1 and D2 receptors and the DAT. These data suggest a predominance of D2-like over D1-like function between 20 and 30 days of age. These combined results suggested that the dopamine D1 receptor is functionally inhibited at young age.


Assuntos
Envelhecimento/fisiologia , Encéfalo , Imageamento por Ressonância Magnética , Receptores de Dopamina D1 , Receptores de Dopamina D2 , Adolescente , Adulto , Anfetamina/metabolismo , Anfetamina/farmacologia , Animais , Encéfalo/anatomia & histologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Circulação Cerebrovascular/efeitos dos fármacos , Cocaína/metabolismo , Cocaína/farmacologia , Agonistas de Dopamina/metabolismo , Agonistas de Dopamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/agonistas , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Inibidores da Captação de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Humanos , Masculino , Metilfenidato/metabolismo , Metilfenidato/farmacologia , Microdiálise , Fenantridinas/metabolismo , Fenantridinas/farmacologia , Quimpirol/metabolismo , Quimpirol/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D1/ultraestrutura , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/fisiologia , Receptores de Dopamina D2/ultraestrutura , Fluxo Sanguíneo Regional
8.
Sci Rep ; 10(1): 13162, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753748

RESUMO

A common missense variant in SLC39A8 is convincingly associated with schizophrenia and several additional phenotypes. Homozygous loss-of-function mutations in SLC39A8 result in undetectable serum manganese (Mn) and a Congenital Disorder of Glycosylation (CDG) due to the exquisite sensitivity of glycosyltransferases to Mn concentration. Here, we identified several Mn-related changes in human carriers of the common SLC39A8 missense allele. Analysis of structural brain MRI scans showed a dose-dependent change in the ratio of T2w to T1w signal in several regions. Comprehensive trace element analysis confirmed a specific reduction of only serum Mn, and plasma protein N-glycome profiling revealed reduced complexity and branching. N-glycome profiling from two individuals with SLC39A8-CDG showed similar but more severe alterations in branching that improved with Mn supplementation, suggesting that the common variant exists on a spectrum of hypofunction with potential for reversibility. Characterizing the functional impact of this variant will enhance our understanding of schizophrenia pathogenesis and identify novel therapeutic targets and biomarkers.


Assuntos
Encéfalo/diagnóstico por imagem , Proteínas de Transporte de Cátions/genética , Manganês/metabolismo , Esquizofrenia/genética , Encéfalo/metabolismo , Feminino , Glicosilação , Humanos , Mutação com Perda de Função , Imageamento por Ressonância Magnética , Masculino , Manganês/sangue , Mutação de Sentido Incorreto , Polissacarídeos/sangue , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/metabolismo
9.
Neurobiol Dis ; 35(3): 348-51, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19501164

RESUMO

It has been suggested, based on rodent studies, that levodopa (L-dopa) induced dyskinesia is associated with a disrupted blood-brain barrier (BBB). We have investigated BBB integrity with in vivo neuroimaging techniques in six 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) lesioned primates exhibiting L-dopa-induced dyskinesia. Magnetic resonance imaging (MRI) performed before and after injection of Gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) revealed an intact BBB in the basal ganglia showing that l-dopa-induced dyskinesia is not associated with a disrupted BBB in this model.


Assuntos
Antiparkinsonianos/efeitos adversos , Barreira Hematoencefálica/patologia , Discinesia Induzida por Medicamentos/patologia , Levodopa/efeitos adversos , Transtornos Parkinsonianos/tratamento farmacológico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Antiparkinsonianos/uso terapêutico , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Gadolínio DTPA , Levodopa/uso terapêutico , Macaca fascicularis , Imageamento por Ressonância Magnética , Masculino , Transtornos Parkinsonianos/patologia , Fatores de Tempo
10.
Eur J Neurosci ; 30(11): 2143-50, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19930399

RESUMO

We investigated the effects of disease progression on brain regional neurochemistry in a mutant mouse model of familial amyotrophic lateral sclerosis (FALS; the G93A model) using in vivo and in vitro magnetic resonance spectroscopy (MRS). There were numerous changes in the brain spectra that were brain region dependent. At early time points starting around 80 days of age there were increases in brain glutamate. At later time points there were more extensive changes including decreased N-acetyl aspartate and glutamate and increased glutamine, taurine and myo-inositol. The effects of the disease were most severe in spinal cord followed by medulla and then sensorimotor cortex. There were no changes noted in cerebellum as a control region. The effects of creatine supplementation in the diet (2%) were measured in wild-type and FALS animals in medulla, cerebellum and cortex. The increase in brain creatine was largest in cerebellum (25%) followed by medulla (11%) and then cortex (4%), reflecting the ordering of creatine kinase activity. There was a protective effect of creatine on N-acetyl aspartate loss in the medulla at late stages. Creatine supplementation had a positive effect on weight retention, leading to a 13% increase in weight between 120 and 130 days. MRS shows promise in monitoring multiple facets of neuroprotective strategies in ALS and ALS models.


Assuntos
Esclerose Lateral Amiotrófica/dietoterapia , Esclerose Lateral Amiotrófica/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Creatina/uso terapêutico , Espectroscopia de Ressonância Magnética , Esclerose Lateral Amiotrófica/genética , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Biomarcadores/metabolismo , Encéfalo/efeitos dos fármacos , Creatina/metabolismo , Modelos Animais de Doenças , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Técnicas In Vitro , Inositol/metabolismo , Modelos Lineares , Camundongos , Camundongos Transgênicos , Prótons , Análise Espectral/métodos , Superóxido Dismutase/genética
11.
Synapse ; 63(9): 764-72, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19484725

RESUMO

UNLABELLED: We studied the metabolic responses to different DA concentrations elicited by four doses of D-amphetamine (AMPH, 0, 0.25, 0.5, 1.0, or 3.0 mg/kg). We compared the degree of DA release (via microdialysis) with striatal cAMP activity and whole brain maps of cerebral blood volume (rCBV) changes (via pharmacological MRI, phMRI). RESULTS: AMPH increased DA release in the caudate/putamen (CPu) and cAMP activity in the CPu, nucleus accumbens (NAc), and medial prefrontal cortex (mPFC) in a linear dose-dependent manner (P < 0.0001). The cAMP data suggest that, postsynaptically, signal transduction induced by D1 receptor is stronger than that of D2 receptor at the higher doses (1-3 mg/kg). phMRI showed that, while higher doses of AMPH (3 mg/kg (n = 7) and 1 mg/kg (n = 6)) induced significant rCBV increases in the CPu and NAc, the degree of rCBV increase was much smaller with AMPH of 0.5 mg/kg (n = 6). In contrast, AMPH of 0.25 mg/kg (n = 8) induced significant rCBV decreases in the anteromedial CPu and NAc. The sign switch of rCBV in response to AMPH from low to high doses likely reflects the switching in the balance of D2/D3 stimulation vs. D1/D5 stimulation. In conclusion, degree of postsynaptic signal transduction is linearly correlated to the extracellular DA concentration. However, the presynaptic binding may dominate the overall DA innervation at the lower range of DA concentration.


Assuntos
Anfetamina/farmacologia , Encéfalo/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Dopamina/metabolismo , Receptores Dopaminérgicos/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Mapeamento Encefálico , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/fisiologia , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Líquido Extracelular/efeitos dos fármacos , Líquido Extracelular/metabolismo , Masculino , Microdiálise , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Dopaminérgicos/metabolismo , Receptores de Dopamina D1/efeitos dos fármacos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/efeitos dos fármacos , Receptores de Dopamina D2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Membranas Sinápticas/efeitos dos fármacos , Membranas Sinápticas/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
12.
Sci Rep ; 9(1): 10972, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358793

RESUMO

Lipid metabolism is abnormal in Alzheimer's disease (AD) brain leading to ceramide and sphingosine accumulation and reduced levels of brain sphingosine-1-phosphate (S1P). We hypothesize that changes in S1P signaling are central to the inflammatory and immune-pathogenesis of AD and the therapeutic benefits of fingolimod, a structural analog of sphingosine that is FDA approved for the treatment of multiple sclerosis. We recently reported that the neuroprotective effects of fingolimod in 5xFAD transgenic AD mice treated from 1-3 months of age were greater at 1 mg/kg/day than at 5 mg/kg/day. Here we performed a dose-response study using fingolimod from 0.03 to 1 mg/kg/day in 5xFAD mice treated from 1-8 months of age. At 1 mg/kg/day, fingolimod decreased both peripheral blood lymphocyte counts and brain Aß levels, but at the lowest dose tested (0.03 mg/kg/day), we detected improved memory, decreased activation of brain microglia and astrocytes, and restored hippocampal levels of GABA and glycerophosphocholine with no effect on circulating lymphocyte counts. These findings suggests that, unlike the case in multiple sclerosis, fingolimod may potentially have therapeutic benefits in AD at low doses that do not affect peripheral lymphocyte function.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Encéfalo/efeitos dos fármacos , Reposicionamento de Medicamentos , Cloridrato de Fingolimode/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Cloridrato de Fingolimode/uso terapêutico , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/patologia , Ácido gama-Aminobutírico/metabolismo
13.
J Neurosci ; 27(47): 12908-15, 2007 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-18032664

RESUMO

Huntington's disease (HD) is an autosomal dominant inherited neurodegenerative disorder in which the neostriatum degenerates early and most severely, with involvement of other brain regions. There is significant evidence that excitotoxicity may play a role in striatal degeneration through altered afferent corticostriatal and nigrostriatal projections that may modulate synaptically released striatal glutamate. Glutamate is a central tenant in provoking excitotoxic cell death in striatal neurons already weakened by the collective molecular events occurring in HD. In addition, transcriptional suppression of trophic factors occurs in human and transgenic mouse models of HD, suggesting that a loss of trophic support might contribute to degeneration. Since anti-glutamate approaches have been effective in improving disease phenotype in HD mice, we examined whether deafferentation of the corticostriatal and nigrostriatal pathways may mitigate striatal stress and neurodegeneration. Both surgical and chemical lesions of the corticostriatal and nigrostriatal pathways, respectively, improved the behavioral, neuropathological, and biochemical phenotype in R6/2 transgenic mice and extended survival. Decortication ameliorated hindlimb clasping, striatal neuron atrophy, and huntingtin-positive aggregates, improved N-acetyl aspartate/creatine levels, reduced oxidative stress, and significantly lowered striatal glutamate levels. In addition, 6-hydroxydopamine lesioned mice showed extended survival along with a significant reduction in striatal glutamate. These results suggest that synaptic stress is likely to contribute to neurodegeneration in HD, whereas transsynaptic trophic influences may not be as salient. Thus, modulation of synaptic influences continues to have therapeutic potential in HD.


Assuntos
Modelos Animais de Doenças , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Sinapses/metabolismo , Sinapses/patologia , Animais , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Feminino , Doença de Huntington/prevenção & controle , Camundongos , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Neostriado/metabolismo , Neostriado/patologia , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Degeneração Neural/prevenção & controle , Vias Neurais/metabolismo
14.
Neuroscientist ; 14(5): 503-20, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18024855

RESUMO

Altered gene activities are underlying causes of many neurological disorders. The ability to detect, image, and report endogenous gene transcription using magnetic resonance (MR) holds great potential for providing significant clinical benefits. In this review, we present the development of conjugates consisting of gene-targeting short nucleic acids (oligodeoxynucleotides, or sODN) and superparamagnetic iron oxide nanoparticles (SPION, an MR susceptibility T(2) agent) for reporting gene activity using transcription MRI (tMRI). We will discuss 1) the target specificity of sODN, 2) selection of contrast agents for tMRI, 3) the distribution and uptake, 4) sequence specificity, 5) histology of SPION and sODN, 6) data acquisition and quantitative analysis for tMRI, and 7) application of gene transcript-targeting nanoparticles in biology and medicine. We will also discuss methods of validating the correlation between results from conventional assays (in situ hybridization, PCR, histology Prussian blue stain and immunohistochemistry) in postmortem samples and retention of SPION-sODN using tMRI. The application of our novel contrast probe to report and target gene transcripts in the mesolimbic pathways of living mouse brains after amphetamine exposure will be discussed. Because of the targeting ability in the nucleic acid sequence, the concept of tMRI probes with complementary nucleic acid (antisense DNA or short interfering RNA) allows not only tracking, targeting, binding to intracellular mRNA, and manipulating gene action but also tracing cells with specific gene action in living brains. Transcription MRI will lend itself to myriad applications in living organs.


Assuntos
Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Transcrição Gênica , Encéfalo/anatomia & histologia , Química Encefálica/genética , Mapeamento Encefálico/métodos , Meios de Contraste/normas , Marcação de Genes , Humanos , Imageamento por Ressonância Magnética/tendências , Nanopartículas/normas , Sondas de Oligonucleotídeos/química
15.
Brain Res ; 1207: 225-36, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18374906

RESUMO

We examined the effects of ibuprofen on cognitive deficits, Abeta and tau accumulation in young triple transgenic (3xTg-AD) mice. 3xTg-AD mice were fed ibuprofen-supplemented chow between 1 and 6 months. Untreated 3xTg-AD mice showed significant impairment in the ability to learn the Morris water maze (MWM) task compared to age-matched wild-type (WT) mice. The performance of 3xTg-AD mice was significantly improved with ibuprofen treatment compared to untreated 3xTg-AD mice. Ibuprofen-treated transgenic mice showed a significant decrease in intraneuronal oligomeric Abeta and hyperphosphorylated tau (AT8) immunoreactivity in the hippocampus. Confocal microscopy demonstrated co-localization of conformationally altered (MC1) and early phosphorylated tau (CP-13) with oligomeric Abeta, and less co-localization of oligomeric Abeta and later forms of phosphorylated tau (AT8 and PHF-1) in untreated 3xTg-AD mice. Our findings show that prophylactic treatment of young 3xTg-AD mice with ibuprofen reduces intraneuronal oligomeric Abeta, reduces cognitive deficits, and prevents hyperphosphorylated tau immunoreactivity. These findings provide further support for intraneuronal Abeta as a cause of cognitive impairment, and suggest that pathological alterations of tau are associated with intraneuronal oligomeric Abeta accumulation.


Assuntos
Doença de Alzheimer/complicações , Peptídeos beta-Amiloides/metabolismo , Inibidores de Ciclo-Oxigenase/uso terapêutico , Ibuprofeno/uso terapêutico , Transtornos da Memória , Proteínas tau/metabolismo , Adenosina Trifosfatases/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Humanos , Indóis , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Camundongos , Camundongos Transgênicos , Mutação/fisiologia , Fosforilação/efeitos dos fármacos , Presenilina-1/genética , Proteínas tau/genética
16.
Neurosci Lett ; 431(3): 231-5, 2008 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-18178315

RESUMO

The subcortical response to peripheral somatosensory stimulation is not well studied. Prior literature suggests that somatosensory stimulation can affect dopaminergic tone. We studied the effects of electrical stimulation near the median nerve on the response to an amphetamine-induced increase in synaptic dopamine. We applied the electrical stimulation close to the median nerve 20 min after administration of 3mg/kg amphetamine. We used fMRI and microdialysis to measure markers of dopamine (DA) release, together with the release of associated neurotransmitters of striatal glutamate (Glu) and gamma-aminobutyric acid (GABA). Changes in cerebral blood volume (CBV), a marker used in fMRI, indicate that electrical stimulation significantly attenuated increased DA release (due to AMPH) in the striatum, thalamus, medial prefrontal and cingulate cortices. Microdialysis showed that electrical stimulation increased Glu and GABA release and attenuated the AMPH-enhanced DA release. The striatal DA dynamics correlated with the CBV response. These results demonstrate that electrical stimulation near the median nerve activates Glu/GABA release, which subsequently attenuate excess striatal DA release. These data provide evidence for physiologic modulation caused by electroacupuncture at points near the median nerve.


Assuntos
Encéfalo/metabolismo , Dopamina/metabolismo , Estimulação Elétrica/métodos , Hemodinâmica/efeitos da radiação , Metacarpo/efeitos da radiação , Inibição Neural/efeitos da radiação , Anfetamina/farmacologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Mapeamento Encefálico , Estimulantes do Sistema Nervoso Central/farmacologia , Hemodinâmica/efeitos dos fármacos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Metacarpo/inervação , Inibição Neural/efeitos dos fármacos , Oxigênio/sangue , Ratos , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/metabolismo
17.
Exp Neurol ; 300: 111-120, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29126887

RESUMO

Dysfunction in the resolution of inflammation may play a key role in Alzheimer's disease (AD). In this study, we found that the levels of specialized pro-resolving lipid mediators (SPMs) in the hippocampus of 5xFAD mice are significantly lower than in non-transgenic littermates. We, therefore, tested the hypothesis that treatment with resolvin E1 (RvE1) and lipoxin A4 (LXA4) alone or in combination will reverse the neuroinflammatory process and decrease Aß pathology. 5xFAD mice were treated intraperitoneally starting at 1month of age with RvE1 or LXA4 alone or in combination at a dose of 1.5 µg/kg, 3 times a week until 3months of age. We found that treatment with RvE1 or LXA4 alone or in combination increased the concentration of RvE1, LXA4, and RvD2 in the hippocampus as measured by ELISA. Combination treatment of RvE1 and LXA4 had a more potent effect on the activation of microglia and astrocytes than either treatment alone, measured by immunohistochemistry with Iba1 and GFAP antibodies, respectively. The concentrations of Aß40 and Aß42 were measured by ELISA and the percentage of Aß plaques were analyzed by immunohistochemistry. All treatments single and in combination, decreased the measures of Aß pathology and restored the homeostasis reversing the inflammatory process for inflammatory cytokines and chemokines (GM-CSF, IFN-γ, IL-1ß, IL-6, IL-10, TNF-α, MCP-1, MIP-1α, MIP-1ß, and RANTES) as measured by multiplex immunoassay. Overall, the study showed that the levels of SPMs in the hippocampus of 5xFAD mice were significantly lower than in wild-type mice; that treatment with RvE1 and LXA4 restored the level of these compounds, reversed the inflammatory process, and decreased the neuroinflammation associated with Aß pathology in 5xFAD mice.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Anti-Inflamatórios não Esteroides/administração & dosagem , Modelos Animais de Doenças , Ácido Eicosapentaenoico/análogos & derivados , Lipoxinas/administração & dosagem , Doença de Alzheimer/patologia , Animais , Quimioterapia Combinada , Ácido Eicosapentaenoico/administração & dosagem , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Camundongos Transgênicos
18.
Eur J Pharmacol ; 828: 9-17, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29510124

RESUMO

Interest in brain-derived neurotrophic factor (BDNF) was greatly enhanced when it was recognized that its expression is reduced in neurodegenerative disorders, especially in Alzheimer's disease (AD). BDNF signaling through the TrkB receptor has a central role in promoting synaptic transmission, synaptogenesis, and facilitating synaptic plasticity making the BDNF-TrkB signaling pathway an attractive candidate for targeted therapies. Here we investigated the early effect of the small molecule TrkB agonist, 7,8 dihydroxyflavone (7,8-DHF), on AD-related pathology, dendritic arborization, synaptic density, and neurochemical changes in the 5xFAD mouse model of AD. We treated 5xFAD mice with 7,8-DHF for 2 months beginning at 1 month of age. We found that, in this model of AD, 7,8-DHF treatment decreased cortical Aß plaque deposition and protected cortical neurons against reduced dendritic arbor complexity but had no significant impact on the density of dendritic spines. In addition 7,8-DHF treatment protected against hippocampal increase in the level of choline-containing compounds and glutamate loss, but had no significant impact on hippocampal neurogenesis.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Flavonas/farmacologia , Fármacos Neuroprotetores/farmacologia , Peptídeos beta-Amiloides/metabolismo , Animais , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/patologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos , Fragmentos de Peptídeos/metabolismo
19.
Brain Res ; 1681: 34-43, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29277710

RESUMO

Gulf War Illness (GWI) is a chronic disease that affects the 1991 Gulf War (GW) veterans for which treatment is lacking. It has been hypothesized that drugs used to protect military personnel from chemical attacks and insects during the war: pyridostigmine bromide (PB),N, N-diethyl-m-toluamide (DEET), and permethrin (PER) together with stress may have contributed collectively and synergistically to generate GWI. There is a need to find markers of pathology to be used in pre-clinical trials. For this purpose we employed a previously validated mouse model of GWI evoked by daily exposure to PB (1.3 mg/kg), DEET (40 mg/kg), PER (0.13 mg/kg), and 5 min of restraint stress for 28 days to analyze behavior, brain pathology and neurochemical outcomes three months later. GWI-model mice were characterized by increased anxiety, decreased hippocampal levels of N-acetyl aspartate, GABA, the GABA-producing enzyme GAD-67 and microglial activation. We also observed that GWI model was sexually dimorphic on some measures: males had increased while females had decreased protein levels of the acetylcholine-synthesizing enzyme, choline acetyltransferase, in the septum and hippocampus and decreased levels of the receptor for brain-derived neurotrophic factor, TrkB140, in the hippocampus. Increased hippocampal levels of nerve growth factor were detected in males only. Together the data show behavioral and neuropathological abnormalities detected at 3 months post-exposure and that some of them are sexually dimorphic. Future preclinical studies for GWI may take advantage of this short latency model and should include both males and females as their response to treatment may differ.


Assuntos
Acetilcolina/metabolismo , Ansiedade/complicações , Modelos Animais de Doenças , Encefalite/complicações , Síndrome do Golfo Pérsico/etiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , DEET/administração & dosagem , Feminino , Masculino , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Permetrina/administração & dosagem , Síndrome do Golfo Pérsico/metabolismo , Brometo de Piridostigmina/administração & dosagem , Estresse Psicológico/complicações
20.
J Med Chem ; 50(17): 4135-46, 2007 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-17672446

RESUMO

Dopamine D3 receptor antagonists and partial agonists have been shown to modulate drug-seeking effects induced by cocaine and other abused substances. Compound 6 [PG01037, (N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)-trans-but-2-enyl)-4-pyridine-2-ylbenzamide)] and related analogues are currently being evaluated in animal models of drug addiction. In these studies, a discrepancy between in vitro binding affinity, in vivo occupancy, and behavioral potency has been observed. The purpose of this study was to examine (1) modifications of the 2-pyridylphenyl moiety of 6 and (2) hydroxyl, acetyl, and cyclopropyl substitutions on the butylamide linking chain systematically coupled with 2-fluorenylamide or 2-pyridylphenylamide and 2-methoxy- or 2,3-dichloro-substituted phenylpiperazines to measure the impact on binding affinity, D2/D3 selectivity, lipophilicity, and function. In general, these modifications were well tolerated at the human dopamine D3 (hD3) receptor (Ki = 1-5 nM) as measured in competition binding assays. Several analogues showed >100-fold selectivity for dopamine D3 over D2 and D4 receptors. In addition, while all the derivatives with an olefinic linker were antagonists, in quinpirole-stimulated mitogenesis at hD3 receptors, several of the hydroxybutyl-linked analogues (16, 17, 21) showed partial agonist activity. Finally, several structural modifications reduced lipophilicities while retaining the desired binding profile.


Assuntos
Amidas/síntese química , Piperazinas/síntese química , Receptores de Dopamina D3/agonistas , Receptores de Dopamina D3/antagonistas & inibidores , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Amidas/química , Amidas/farmacologia , Animais , Benzamidas/química , Benzamidas/farmacocinética , Ligação Competitiva , Encéfalo/metabolismo , Linhagem Celular , Humanos , Ligantes , Imageamento por Ressonância Magnética , Mitose/efeitos dos fármacos , Piperazinas/química , Piperazinas/farmacologia , Piridinas/química , Piridinas/farmacocinética , Ensaio Radioligante , Ratos , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa