Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Mutagenesis ; 39(1): 13-23, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37555614

RESUMO

Cadmium chloride (CdCl2) is a known genotoxic carcinogen, with a mechanism of action thought to partly involve the generation of reactive oxygen species (ROS). We applied here a multi-endpoint approach in vitro to explore the impact of CdCl2 on both the genome and on wider cell biology pathways relevant to cancer. Multi-endpoint approaches are believed to offer greater promise in terms of understanding the holistic effects of carcinogens in vitro. This richer understanding may help better classification of carcinogens as well as allowing detailed mechanisms of action to be identified. We found that CdCl2 caused DNA damage [micronuclei (MN)] in both TK6 and NH32 cells in a dose-dependent manner after 4 h exposure (plus 23 h recovery), with lowest observable effect levels (LOELs) for MN induction of 1 µM (TK6) and 1.6 µM (NH32). This DNA damage induction in TK6 cells was ROS dependent as pretreatment with the antioxidant N-Acetyl Cysteine (1 mM), abrogated this effect. However, 2',7'-dichlorofluorescin diacetate was not capable of detecting the ROS induced by CdCl2. The use of NH32 cells allowed an investigation of the role of p53 as they are a p53 null cell line derived from TK6. NH32 showed a 10-fold increase in MN in untreated cells and a similar dose-dependent effect after CdCl2 treatment. In TK6 cells, CdCl2 also caused activation of p53 (accumulation of total and phosphorylated p53), imposition of cell cycle checkpoints (G2/M) and intriguingly the production of smaller and more eccentric (elongated) cells. Overall, this multi-endpoint study suggests a carcinogenic mechanism of CdCl2 involving ROS generation, oxidative DNA damage and p53 activation, leading to cell cycle abnormalities and impacts of cell size and shape. This study shows how the integration of multiple cell biology endpoints studied in parallel in vitro can help mechanistic understanding of how carcinogens disrupt normal cell biology.


Assuntos
Cloreto de Cádmio , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Cádmio/toxicidade , Cloreto de Cádmio/metabolismo , Dano ao DNA , Ciclo Celular , Carcinógenos/toxicidade
2.
Mutagenesis ; 39(2): 69-77, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38301659

RESUMO

Chemical safety testing plays a crucial role in product and pharmacological development, as well as chemoprevention; however, in vitro genotoxicity safety tests do not always accurately predict the chemicals that will be in vivo carcinogens. If chemicals test positive in vitro for genotoxicity but negative in vivo, this can contribute to unnecessary testing in animals used to confirm erroneous in vitro positive results. Current in vitro tests typically evaluate only genotoxicity endpoints, which limits their potential to detect non-genotoxic carcinogens. The frequency of misleading in vitro positive results can be high, leading to a requirement for more informative in vitro tests. It is now recognized that multiple-endpoint genotoxicity testing may aid more accurate detection of carcinogens and non-carcinogens. The objective of this review was to evaluate the utility of our novel, multiple-endpoint in vitro test, which uses multiple cancer-relevant endpoints to predict carcinogenic potential. The tool assessed micronucleus frequency, p53 expression, p21 expression, mitochondrial respiration, cell cycle abnormalities and, uniquely, cell morphology changes in human lymphoblastoid cell lines, TK6 and MCL-5. The endpoints were used to observe cellular responses to 18 chemicals within the following categories: genotoxic carcinogens, non-genotoxic carcinogens, toxic non-carcinogens, and misleading in vitro positive and negative agents. The number of endpoints significantly altered for each chemical was considered, alongside the holistic Integrated Signature of Carcinogenicity score, derived from the sum of fold changes for all endpoints. Following the calculation of an overall score from these measures, carcinogens exhibited greater potency than non-carcinogens. Genotoxic carcinogens were generally more potent than non-genotoxic carcinogens. This novel approach therefore demonstrated potential for correctly predicting whether chemicals with unknown mechanism may be considered carcinogens. Overall, while further validation is recommended, the test demonstrates potential for the identification of carcinogenic compounds. Adoption of the approach could enable reduced animal use in carcinogenicity testing.


Assuntos
Carcinogênese , Carcinógenos , Animais , Humanos , Carcinógenos/toxicidade , Testes de Carcinogenicidade/métodos , Testes de Mutagenicidade/métodos , Dano ao DNA , Técnicas In Vitro
3.
Cell Mol Biol (Noisy-le-grand) ; 69(4): 179-187, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37329528

RESUMO

The expression of six transmembrane epithelial antigen of the prostate (STEAP2) is increased in prostate cancer when compared to normal tissue, suggesting a role for STEAP2 in disease progression. This study aimed to determine whether targeting STEAP2 with an anti-STEAP2 polyclonal antibody (pAb) or CRISPR/Cas9 knockout influenced aggressive prostate cancer traits. Gene expression analysis of the STEAP gene family was performed in a panel of prostate cancer cell lines; C4-2B, DU145, LNCaP and PC3. The highest increases in STEAP2 gene expression were observed in C4-2B and LNCaP cells (p<0.001 and p<0.0001 respectively) when compared to normal prostate epithelial PNT2 cells. These cell lines were treated with an anti-STEAP2 pAb and their viability assessed. CRISPR/Cas9 technology was used to knockout STEAP2 from C4-2B and LNCaP cells and viability, proliferation, migration and invasion assessed. When exposed to an anti-STEAP2 pAb, cell viability significantly decreased (p<0.05). When STEAP2 was knocked out, cell viability and proliferation was significantly decreased when compared to wild-type cells (p<0.001). The migratory and invasive potential of knockout cells were also decreased. These data suggest that STEAP2 has a functional role in driving aggressive prostate cancer traits and could provide a novel therapeutic target for the treatment of prostate cancer.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Perfilação da Expressão Gênica , Linhagem Celular Tumoral
4.
Small ; 17(15): e2006298, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33480476

RESUMO

Nanomaterials are defined as materials with at least one dimension of 100 nm or less. Their small size confers unique properties that may alter the toxicity profile when compared to larger forms of the same material, requiring additional considerations for safety assessment. There has been a rise in the development of nanomaterials for many applications, and although traditional approaches for toxicity testing may address some of the new toxicity concerns, many may not be directly applicable to nanomaterials and new tools or approaches may need to be developed. Since nanomaterials can exist in many different forms, each of which may cause different adverse biological effects, reliance on traditional in vivo models for safety assessment will simply not be feasible or sustainable, given the volume of materials that may need to be tested. It is essential to consider and develop new in vitro methods that can be applied for hazard identification and risk assessment. Many challenges are associated with using alternative approaches to ensure they are as robust and reliable as traditional in vivo approaches, but by overcoming these issues and adopting new testing strategies there are opportunities to improve safety assessments and reduce the reliance on animal-based toxicity testing strategies.


Assuntos
Nanoestruturas , Testes de Toxicidade , Animais , Nanoestruturas/toxicidade , Medição de Risco
5.
Small ; 17(15): e2006055, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33448117

RESUMO

Whilst the liver possesses the ability to repair and restore sections of damaged tissue following acute injury, prolonged exposure to engineered nanomaterials (ENM) may induce repetitive injury leading to chronic liver disease. Screening ENM cytotoxicity using 3D liver models has recently been performed, but a significant challenge has been the application of such in vitro models for evaluating ENM associated genotoxicity; a vital component of regulatory human health risk assessment. This review considers the benefits, limitations, and adaptations of specific in vitro approaches to assess DNA damage in the liver, whilst identifying critical advancements required to support a multitude of biochemical endpoints, focusing on nano(geno)toxicology (e.g., secondary genotoxicity, DNA damage, and repair following prolonged or repeated exposures).


Assuntos
Nanoestruturas , Dano ao DNA , Humanos , Fígado , Nanoestruturas/toxicidade , Medição de Risco
6.
Small ; 17(15): e2002551, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32734718

RESUMO

Few-layer graphene (FLG) has garnered much interest owing to applications in hydrogen storage and reinforced nanocomposites. Consequently, these engineered nanomaterials (ENMs) are in high demand, increasing occupational exposure. This investigation seeks to assess the inhalation hazard of industrially relevant FLG engineered with: (i) no surface functional groups (neutral), (ii) amine, and (iii) carboxyl group functionalization. A monoculture of human lung epithelial (16HBE14o- ) cells is exposed to each material for 24-h, followed by cytotoxicity and genotoxicity evaluation using relative population doubling (RPD) and the cytokinesis-blocked micronucleus (CBMN) assay, respectively. Neutral-FLG induces the greatest (two-fold) significant increase (p < 0.05) in micronuclei, whereas carboxyl-FLG does not induce significant (p < 0.05) genotoxicity. These findings correlate to significant (p < 0.05) concentration-dependent increases in interleukin (IL)-8, depletion of intracellular glutathione (rGSH) and a depletion in mitochondrial ATP production. Uptake of FLG is evaluated by transmission electron microscopy, whereby FLG particles are observed within membrane-bound vesicles in the form of large agglomerates (>1 µm diameter). The findings of the present study have demonstrated the capability of neutral-FLG and amine-FLG to induce genotoxicity in 16HBE14o- cells through primary indirect mechanisms, suggesting a possible role for carboxyl groups in scavenging radicals produced via oxidative stress.


Assuntos
Grafite , Nanocompostos , Dano ao DNA , Células Epiteliais , Proteínas Filagrinas , Grafite/toxicidade , Humanos , Pulmão
7.
J Nanobiotechnology ; 19(1): 24, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468168

RESUMO

BACKGROUND: Toxicological evaluation of engineered nanomaterials (ENMs) is essential for occupational health and safety, particularly where bulk manufactured ENMs such as few-layer graphene (FLG) are concerned. Additionally, there is a necessity to develop advanced in vitro models when testing ENMs to provide a physiologically relevant alternative to invasive animal experimentation. The aim of this study was to determine the genotoxicity of non-functionalised (neutral), amine- and carboxyl-functionalised FLG upon both human-transformed type-I (TT1) alveolar epithelial cell monocultures, as well as co-cultures of TT1 and differentiated THP-1 monocytes (d.THP-1 (macrophages)). RESULTS: In monocultures, TT1 and d.THP-1 macrophages showed a statistically significant (p < 0.05) cytotoxic response with each ENM following 24-h exposures. Monoculture genotoxicity measured by the in vitro cytokinesis blocked micronucleus (CBMN) assay revealed significant (p < 0.05) micronuclei induction at 8 µg/ml for amine- and carboxyl-FLG. Transmission electron microscopy (TEM) revealed ENMs were internalised by TT1 cells within membrane-bound vesicles. In the co-cultures, ENMs induced genotoxicity in the absence of cytotoxic effects. Co-cultures pre-exposed to 1.5 mM N-acetylcysteine (NAC), showed baseline levels of micronuclei induction, indicating that the genotoxicity observed was driven by oxidative stress. CONCLUSIONS: Therefore, FLG genotoxicity when examined in monocultures, results in primary-indirect DNA damage; whereas co-cultured cells reveal secondary mechanisms of DNA damage.


Assuntos
Dano ao DNA/efeitos dos fármacos , Grafite/toxicidade , Nanoestruturas/química , Células Epiteliais Alveolares , Animais , Diferenciação Celular , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Proteínas Filagrinas , Humanos , Macrófagos/efeitos dos fármacos , Testes de Mutagenicidade/métodos , Estresse Oxidativo/efeitos dos fármacos , Células THP-1
8.
J Nanobiotechnology ; 19(1): 193, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183029

RESUMO

BACKGROUND: With the continued integration of engineered nanomaterials (ENMs) into everyday applications, it is important to understand their potential for inducing adverse human health effects. However, standard in vitro hazard characterisation approaches suffer limitations for evaluating ENM and so it is imperative to determine these potential hazards under more physiologically relevant and realistic exposure scenarios in target organ systems, to minimise the necessity for in vivo testing. The aim of this study was to determine if acute (24 h) and prolonged (120 h) exposures to five ENMs (TiO2, ZnO, Ag, BaSO4 and CeO2) would have a significantly different toxicological outcome (cytotoxicity, (pro-)inflammatory and genotoxic response) upon 3D human HepG2 liver spheroids. In addition, this study evaluated whether a more realistic, prolonged fractionated and repeated ENM dosing regime induces a significantly different toxicity outcome in liver spheroids as compared to a single, bolus prolonged exposure. RESULTS: Whilst it was found that the five ENMs did not impede liver functionality (e.g. albumin and urea production), induce cytotoxicity or an IL-8 (pro-)inflammatory response, all were found to cause significant genotoxicity following acute exposure. Most statistically significant genotoxic responses were not dose-dependent, with the exception of TiO2. Interestingly, the DNA damage effects observed following acute exposures, were not mirrored in the prolonged exposures, where only 0.2-5.0 µg/mL of ZnO ENMs were found to elicit significant (p ≤ 0.05) genotoxicity. When fractionated, repeated exposure regimes were performed with the test ENMs, no significant (p ≥ 0.05) difference was observed when compared to the single, bolus exposure regime. There was < 5.0% cytotoxicity observed across all exposures, and the mean difference in IL-8 cytokine release and genotoxicity between exposure regimes was 3.425 pg/mL and 0.181%, respectively. CONCLUSION: In conclusion, whilst there was no difference between a single, bolus or fractionated, repeated ENM prolonged exposure regimes upon the toxicological output of 3D HepG2 liver spheroids, there was a difference between acute and prolonged exposures. This study highlights the importance of evaluating more realistic ENM exposures, thereby providing a future in vitro approach to better support ENM hazard assessment in a routine and easily accessible manner.


Assuntos
Dano ao DNA/efeitos dos fármacos , Fígado/patologia , Nanoestruturas/administração & dosagem , Nanoestruturas/toxicidade , Albuminas , Proliferação de Células , Citocinas/metabolismo , Células Hep G2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fígado/metabolismo , Testes de Mutagenicidade , Tamanho da Partícula , Ureia
9.
Arch Toxicol ; 95(1): 321-336, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32910239

RESUMO

Current in vitro genotoxicity tests can produce misleading positive results, indicating an inability to effectively predict a compound's subsequent carcinogenic potential in vivo. Such oversensitivity can incur unnecessary in vivo tests to further investigate positive in vitro results, supporting the need to improve in vitro tests to better inform risk assessment. It is increasingly acknowledged that more informative in vitro tests using multiple endpoints may support the correct identification of carcinogenic potential. The present study, therefore, employed a holistic, multiple-endpoint approach using low doses of selected carcinogens and non-carcinogens (0.001-770 µM) to assess whether these chemicals caused perturbations in molecular and cellular endpoints relating to the Hallmarks of Cancer. Endpoints included micronucleus induction, alterations in gene expression, cell cycle dynamics, cell morphology and bioenergetics in the human lymphoblastoid cell line TK6. Carcinogens ochratoxin A and oestradiol produced greater Integrated Signature of Carcinogenicity scores for the combined endpoints than the "misleading" in vitro positive compounds, quercetin, 2,4-dichlorophenol and quinacrine dihydrochloride and toxic non-carcinogens, caffeine, cycloheximide and phenformin HCl. This study provides compelling evidence that carcinogens can successfully be distinguished from non-carcinogens using a holistic in vitro test system. Avoidance of misleading in vitro outcomes could lead to the reduction and replacement of animals in carcinogenicity testing.


Assuntos
Testes de Carcinogenicidade , Carcinógenos/toxicidade , Determinação de Ponto Final , Projetos de Pesquisa , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Forma Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Testes para Micronúcleos , Fosforilação , Medição de Risco , Proteína Supressora de Tumor p53/metabolismo
10.
Small ; 16(36): e2002002, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32755066

RESUMO

To elucidate the impact of human exposure to engineered nanomaterials, advanced in vitro models are a valid non-animal alternative. Despite significant gains over the last decade, implementation of these approaches remains limited. This work discusses the current state-of-the-art and how future developments can lead to advanced in vitro models better supporting nano-hazard assessment.


Assuntos
Exposição Ambiental , Nanoestruturas , Comportamento de Redução do Risco , Exposição Ambiental/prevenção & controle , Humanos , Modelos Biológicos , Nanoestruturas/toxicidade , Medição de Risco
11.
Chem Res Toxicol ; 33(5): 1061-1073, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32307980

RESUMO

Human exposure to engineered nanomaterials (ENMs) is inevitable due to the plethora of applications for which they are being manufactured and integrated within. ENMs demonstrate plentiful advantages in terms of industrial approaches as well as from a consumer perspective. However, despite such positives, doubts remain over the human health implications of ENM exposure. In light of the increased research focus upon the potential effects of ENM exposure to human health in recent decades, questions still remain regarding the safety of these highly advanced, precision-tuned physical entities. The risk of short-term, high-dose exposure to humans is considered relatively low, although this has formed the direction of the hazard-assessment community since the turn of the 21st century. However, the possibility of humans being exposed repeatedly over a long period of time to a low-dose of ENMs of varying physicochemical characteristics is of significant concern, and thus, industry, government, academic, and consumer agencies are only now beginning to consider this. Notably, when considering the human health implications of such low-dose, long-term, repeated exposure scenarios, the impact of ENMs upon the human immune system is of primary importance. However, there remains a real need to understand the impact of ENMs upon the human immune system, especially the innate immune system, at all stages of life, given exposure to nanosized particles begins before birth, that is, of the fetus. Therefore, the purpose of this perspective is to summarize what is currently known regarding ENM exposure of different components of the innate immune system and identify knowledge gaps that should be addressed if we are to fully deduce the impact of ENM exposure on innate immune function.


Assuntos
Imunidade Inata/efeitos dos fármacos , Nanoestruturas/efeitos adversos , Humanos
12.
Mutagenesis ; 35(4): 319-330, 2020 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-32780103

RESUMO

Following advancements in the field of genotoxicology, it has become widely accepted that 3D models are not only more physiologically relevant but also have the capacity to elucidate more complex biological processes that standard 2D monocultures are unable to. Whilst 3D liver models have been developed to evaluate the short-term genotoxicity of chemicals, the aim of this study was to develop a 3D model that could be used with the regulatory accepted in vitro micronucleus (MN) following low-dose, longer-term (5 days) exposure to engineered nanomaterials (ENMs). A comparison study was carried out between advanced models generated from two commonly used liver cell lines, namely HepaRG and HepG2, in spheroid format. While both spheroid systems displayed good liver functionality and viability over 14 days, the HepaRG spheroids lacked the capacity to actively proliferate and, therefore, were considered unsuitable for use with the MN assay. This study further demonstrated the efficacy of the in vitro 3D HepG2 model to be used for short-term (24 h) exposures to genotoxic chemicals, aflatoxin B1 (AFB1) and methyl-methanesulfonate (MMS). The 3D HepG2 liver spheroids were shown to be more sensitive to DNA damage induced by AFB1 and MMS when compared to the HepG2 2D monoculture. This 3D model was further developed to allow for longer-term (5 day) ENM exposure. Four days after seeding, HepG2 spheroids were exposed to Zinc Oxide ENM (0-2 µg/ml) for 5 days and assessed using both the cytokinesis-block MN (CBMN) version of the MN assay and the mononuclear MN assay. Following a 5-day exposure, differences in MN frequency were observed between the CBMN and mononuclear MN assay, demonstrating that DNA damage induced within the first few cell cycles is distributed across the mononucleated cell population. Together, this study demonstrates the necessity to adapt the MN assay accordingly, to allow for the accurate assessment of genotoxicity following longer-term, low-dose ENM exposure.


Assuntos
Técnicas de Cultura de Células/métodos , Fígado/efeitos dos fármacos , Testes para Micronúcleos/métodos , Mutagênicos/toxicidade , Esferoides Celulares , Aflatoxina B1/toxicidade , Linhagem Celular , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Metanossulfonato de Metila/toxicidade , Modelos Biológicos
13.
Mutagenesis ; 35(6): 445-452, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33219664

RESUMO

In vitro genotoxicity studies are a quick and high throughput approach to assess the genotoxic potential of chemicals; however, the reliability of these tests and their relevance to in vivo effects depends on the choice of representative cell line and optimisation of assay conditions. For chemicals like urethane that require specific metabolic activation to cause genotoxicity, it is important that in vitro tests are conducted using cell lines exhibiting the activity and induction of CYP450 enzymes, including CYP2E1 enzyme that is important in the metabolism of urethane, at a concentration representing actual or perceived chemical exposure. We compared 2D MCL-5 cells and HepG2 cells with 3D HepG2 hanging drop spheroids to determine the genotoxicity of urethane using the micronucleus assay. Our 2D studies with MCL-5 did not show any statistically significant genotoxicity [99% relative population doubling (RPD)] compared to controls for concentrations and time point tested in vitro. HepG2 cells grown as 2D indicated that exposure to urethane of up to 30 mM for 23 h did not cause any genotoxic effect (102% RPD) but, at higher concentrations, genotoxicity was produced with only 89-85% RPD. Furthermore, an exposure of 20-50 mM for 23 h using 3D hanging drop spheroid assays revealed a higher MN frequency, thus exhibiting in vitro genotoxicity of urethane in metabolically active cell models. In comparison with previous studies, this study indicated that urethane genotoxicity is dose, sensitivity of cell model (2D vs. 3D) and exposure dependent.


Assuntos
Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Uretana/toxicidade , Biomarcadores , Técnicas de Cultura de Células , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Testes para Micronúcleos/métodos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Esferoides Celulares
14.
Part Fibre Toxicol ; 16(1): 8, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760282

RESUMO

BACKGROUND: It is well established that toxicological evaluation of engineered nanomaterials (NMs) is vital to ensure the health and safety of those exposed to them. Further, there is a distinct need for the development of advanced physiologically relevant in vitro techniques for NM hazard prediction due to the limited predictive power of current in vitro models and the unsustainability of conducting nano-safety evaluations in vivo. Thus, the purpose of this study was to develop alternative in vitro approaches to assess the potential of NMs to induce genotoxicity by secondary mechanisms. RESULTS: This was first undertaken by a conditioned media-based technique, whereby cell culture media was transferred from differentiated THP-1 (dTHP-1) macrophages treated with γ-Fe2O3 or Fe3O4 superparamagnetic iron oxide nanoparticles (SPIONs) to the bronchial cell line 16HBE14o-. Secondly construction and SPION treatment of a co-culture model comprising of 16HBE14o- cells and dTHP-1 macrophages. For both of these approaches no cytotoxicity was detected and chromosomal damage was evaluated by the in vitro micronucleus assay. Genotoxicity assessment was also performed using 16HBE14o- monocultures, which demonstrated only γ-Fe2O3 nanoparticles to be capable of inducing chromosomal damage. In contrast, immune cell conditioned media and dual cell co-culture SPION treatments showed both SPION types to be genotoxic to 16HBE14o- cells due to secondary genotoxicity promoted by SPION-immune cell interaction. CONCLUSIONS: The findings of the present study demonstrate that the approach of using single in vitro cell test systems precludes the ability to consider secondary genotoxic mechanisms. Consequently, the use of multi-cell type models is preferable as they better mimic the in vivo environment and thus offer the potential to enhance understanding and detection of a wider breadth of potential damage induced by NMs.


Assuntos
Dano ao DNA , Compostos Férricos/toxicidade , Nanopartículas de Magnetita/toxicidade , Testes de Mutagenicidade/métodos , Brônquios/efeitos dos fármacos , Brônquios/imunologia , Brônquios/patologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Meios de Cultivo Condicionados , Citocinas/biossíntese , Endocitose/efeitos dos fármacos , Humanos , Técnicas In Vitro , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Células THP-1
15.
Mutagenesis ; 33(4): 283-289, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30204902

RESUMO

Use of imaging flow cytometry to assess induced DNA damage via the cytokinesis block micronucleus (CBMN) assay has thus far been limited to radiation dosimetry in human lymphocytes using high end, 'ImageStream X' series imaging cytometers. Its potential to enumerate chemically induced DNA damage using in vitro cell lines remains unexplored. In the present manuscript, we investigate the more affordable FlowSight® imaging cytometry platform to assess in vitro micronucleus (MN) induction in the human lymphoblastoid TK6 and metabolically competent MCL-5 cells treated with Methyl Methane Sulfonate (MMS) (0-5 µg/ml), Carbendazim (0-1.6 µg/ml), and Benzo[a]Pyrene (B[a]P) (0-6.3 µg/ml) for a period of 1.5-2 cell-cycles. Cells were fixed, and nuclei and MN were stained using the fluorescent nuclear dye DRAQ5™. Image acquisition was carried out using a 20X objective on a FlowSight® imaging cytometer (Amnis, part of Merck Millipore) equipped with a 488 nm laser. Populations of ∼20000 brightfield cell images, alongside DRAQ5™ stained nuclei/MN were rapidly collected (≤10 min). Single, in-focus cells suitable for scoring were then isolated using the IDEAS® software. An overlay of the brightfield cell outlines and the DRAQ5 nuclear fluorescence was used to facilitate scoring of mono-, bi-, tri-, and tetra-nucleated cells with or without MN events and in context of the cytoplasmic boundary of the parent cell.To establish the potential of the FlowSight® platform, and to establish 'ground truth' cell classification for the supervised machine learning based scoring algorithm that represents the next stage of our project, the captured images were scored manually. Alongside, MN frequencies were also derived using the 'gold standard' light microscopy and manual scoring. A minimum of 3000 bi-nucleated cells were assessed using both approaches. Using the benchmark dose approach, the comparability of genotoxic potency estimations for the different compounds and cell lines was assessed across the two scoring platforms as highly similar. This study therefore provides essential proof-of-concept that FlowSight® imaging cytometry is capable of reproducing the results of 'gold standard' manual scoring by light microscopy. We conclude that, with the right automated scoring algorithm, imaging flow cytometry could revolutionise the reportability and scoring throughput of the CBMN assay.


Assuntos
Citometria de Fluxo/métodos , Linfócitos/fisiologia , Testes para Micronúcleos/métodos , Benzimidazóis/farmacologia , Carbamatos/farmacologia , Linhagem Celular , Núcleo Celular/fisiologia , Citocinese/fisiologia , Dano ao DNA/fisiologia , Humanos , Metanossulfonato de Metila/farmacologia , Mutagênicos/farmacologia
16.
Arch Toxicol ; 92(2): 935-951, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29110037

RESUMO

Human exposure to carcinogens occurs via a plethora of environmental sources, with 70-90% of cancers caused by extrinsic factors. Aberrant phenotypes induced by such carcinogenic agents may provide universal biomarkers for cancer causation. Both current in vitro genotoxicity tests and the animal-testing paradigm in human cancer risk assessment fail to accurately represent and predict whether a chemical causes human carcinogenesis. The study aimed to establish whether the integrated analysis of multiple cellular endpoints related to the Hallmarks of Cancer could advance in vitro carcinogenicity assessment. Human lymphoblastoid cells (TK6, MCL-5) were treated for either 4 or 23 h with 8 known in vivo carcinogens, with doses up to 50% Relative Population Doubling (maximum 66.6 mM). The adverse effects of carcinogens on wide-ranging aspects of cellular health were quantified using several approaches; these included chromosome damage, cell signalling, cell morphology, cell-cycle dynamics and bioenergetic perturbations. Cell morphology and gene expression alterations proved particularly sensitive for environmental carcinogen identification. Composite scores for the carcinogens' adverse effects revealed that this approach could identify both DNA-reactive and non-DNA reactive carcinogens in vitro. The richer datasets generated proved that the holistic evaluation of integrated phenotypic alterations is valuable for effective in vitro risk assessment, while also supporting animal test replacement. Crucially, the study offers valuable insights into the mechanisms of human carcinogenesis resulting from exposure to chemicals that humans are likely to encounter in their environment. Such an understanding of cancer induction via environmental agents is essential for cancer prevention.


Assuntos
Testes de Carcinogenicidade/métodos , Carcinógenos/toxicidade , Linfócitos/efeitos dos fármacos , Mutagênicos/toxicidade , Linhagem Celular , Humanos , Testes para Micronúcleos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Proteína Supressora de Tumor p53/metabolismo
17.
Mutagenesis ; 32(1): 233-241, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27815329

RESUMO

With the need to understand the potential biological impact of the plethora of nanoparticles (NPs) being manufactured for a wide range of potential human applications, due to their inevitable human exposure, research activities in the field of NP toxicology has grown exponentially over the last decade. Whilst such increased research efforts have elucidated an increasingly significant knowledge base pertaining to the potential human health hazard posed by NPs, understanding regarding the possibility for NPs to elicit genotoxicity is limited. In vivo models are unable to adequately discriminate between the specific modes of action associated with the onset of genotoxicity. Additionally, in line with the recent European directives, there is an inherent need to move away from invasive animal testing strategies. Thus, in vitro systems are an important tool for expanding our mechanistic insight into NP genotoxicity. Yet uncertainty remains concerning their validity and specificity for this purpose due to the unique challenges presented when correlating NP behaviour in vitro and in vivo This review therefore highlights the current state of the art in advanced in vitro systems and their specific advantages and disadvantages from a NP genotoxicity testing perspective. Key indicators will be given related to how these systems might be used or improved to enhance understanding of NP genotoxicity.


Assuntos
Dano ao DNA , Testes de Mutagenicidade/métodos , Nanopartículas/toxicidade , Animais , DNA/efeitos dos fármacos , Humanos
18.
Mutagenesis ; 32(2): 283-297, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28057708

RESUMO

Mutagens can be carcinogens, and traditionally, they have been identified in vitro using the Salmonella 'Ames' reverse mutation assay. However, prokaryotic DNA packaging, replication and repair systems are mechanistically very different to those in the humans we inevitably seek to protect. Therefore, for many years, mammalian cell line genotoxicity assays that can detect eukaryotic mutagens as well as clastogens and aneugens have been used. The apparent lack of specificity in these largely rodent systems, due partly to their mutant p53 status, has contributed to the use of animal studies to resolve data conflicts. Recently, silencing mutations at the PIG-A locus have been demonstrated to prevent glycophosphatidylinositol (GPI) anchor synthesis and consequentially result in loss of GPI-anchored proteins from the cell's extracellular surface. The successful exploitation of this mutant phenotype in animal studies has triggered interest in the development of an analogous in vitro PIG-A mutation screening assay. This article describes the development of a robust assay design using metabolically active human cells. The assay includes viability and cell membrane integrity assessment and conforms to the future ideas of the 21st-century toxicology testing.


Assuntos
Proteínas de Membrana/genética , Testes de Mutagenicidade/métodos , Mutação , Linhagem Celular , Humanos
19.
J Nanobiotechnology ; 15(1): 45, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28619032

RESUMO

BACKGROUND: Nanoparticle interactions with cellular membranes and the kinetics of their transport and localization are important determinants of their functionality and their biological consequences. Understanding these phenomena is fundamental for the translation of such NPs from in vitro to in vivo systems for bioimaging and medical applications. Two CdSe/ZnS quantum dots (QD) with differing surface functionality (NH2 or COOH moieties) were used here for investigating the intracellular uptake and transport kinetics of these QDs. RESULTS: In water, the COOH- and NH2-QDs were negatively and positively charged, respectively, while in serum-containing medium the NH2-QDs were agglomerated, whereas the COOH-QDs remained dispersed. Though intracellular levels of NH2- and COOH-QDs were very similar after 24 h exposure, COOH-QDs appeared to be continuously internalised and transported by endosomes and lysosomes, while NH2-QDs mainly remained in the lysosomes. The results of (intra)cellular QD trafficking were correlated to their toxicity profiles investigating levels of reactive oxygen species (ROS), mitochondrial ROS, autophagy, changes to cellular morphology and alterations in genes involved in cellular stress, toxicity and cytoskeletal integrity. The continuous flux of COOH-QDs perhaps explains their higher toxicity compared to the NH2-QDs, mainly resulting in mitochondrial ROS and cytoskeletal remodelling which are phenomena that occur early during cellular exposure. CONCLUSIONS: Together, these data reveal that although cellular QD levels were similar after 24 h, differences in the nature and extent of their cellular trafficking resulted in differences in consequent gene alterations and toxicological effects.


Assuntos
Autofagia/efeitos dos fármacos , Compostos de Cádmio/toxicidade , Pontos Quânticos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Compostos de Selênio/toxicidade , Sulfetos/toxicidade , Compostos de Zinco/toxicidade , Compostos de Cádmio/análise , Compostos de Cádmio/metabolismo , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Pontos Quânticos/análise , Pontos Quânticos/metabolismo , Compostos de Selênio/análise , Compostos de Selênio/metabolismo , Sulfetos/análise , Sulfetos/metabolismo , Compostos de Zinco/análise , Compostos de Zinco/metabolismo
20.
Arch Toxicol ; 91(7): 2689-2698, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27942789

RESUMO

The use of manual microscopy for the scoring of chromosome damage in the in vitro micronucleus assay is often associated with user subjectivity. This level of subjectivity can be reduced by using automated platforms, which have added value of faster with high-throughput and multi-endpoint capabilities. However, there is a need to assess the reproducibility and sensitivity of these automated platforms compared with the gold standard of the manual scoring. The automated flow cytometry-based MicroFlow® and image analysis-based Metafer™ were used for dose response analyses in human lymphoblastoid TK6 cells exposed to the model clastogen, methyl methanesulfonate (MMS), aneugen, carbendazim, and the weak genotoxic carcinogen, ochratoxin A (OTA). Cells were treated for 4 or 30 h, with a 26- or 0-h recovery. Flow cytometry scoring parameters and the Metafer™ image classifier were investigated, to assess any potential differences in the micronucleus (MN) dose responses. Dose response data were assessed using the benchmark dose approach with chemical and scoring system set as covariate to assess reproducibility between endpoints. A clear increase in MN frequency was observed using the MicroFlow® approach on TK6 cells treated for 30 h with MMS, carbendazim and OTA. The MicroFlow®-based MN frequencies were comparable to those derived by using the Metafer™ and manual scoring platforms. However, there was a potential overscoring of MN with the MicroFlow® due to the cell lysis step and an underscoring with the Metafer™ system based on current image classifier settings. The findings clearly demonstrate that the MicroFlow® and Metafer™ MN scoring platforms are powerful tools for automated high-throughput MN scoring and dose response analysis.


Assuntos
Relação Dose-Resposta a Droga , Testes para Micronúcleos/instrumentação , Testes para Micronúcleos/métodos , Automação , Benzimidazóis/toxicidade , Carbamatos/toxicidade , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Humanos , Metanossulfonato de Metila/toxicidade , Mutagênicos/toxicidade , Ocratoxinas/toxicidade , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa