Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(12): 7830-7839, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35656584

RESUMO

Vitamin B12 (VB12) has been reported to degrade PFOS in the presence of TiIII citrate at 70 °C. Porphyrin-based catalysts have emerged as VB12 analogues and have been successfully used in various fields of research due to their interesting structural and electronic properties. However, there is inadequate information on the use of these porphyrin-based metal complexes in the defluorination of PFOS. We have therefore explored a series of porphyrin-based metal complexes for the degradation of PFOS. CoII-5,10,15,20-tetraphenyl-21H,23H-porphyrin (CoII-TPP), CoII-5,10,15,20-tetrakis(4-methoxyphenyl)-21H,23H-porphyrin (CoII-M-TPP), and CoIII-M-TPP exhibited efficient reductive defluorination of the branched PFOS. Within 5-8 h, these compounds achieved the same level of PFOS defluorination as VB12 achieved in 7-10 days. For branched isomers, the specific removal rate of the CoII-TPP-TiIII citrate system is 64-105 times higher than that for VB12-TiIII citrate. Moreover, the CoII-TPP-TiIII citrate system displayed efficient (51%) defluorination for the branched PFOS (br-PFOS) in 1 day even at room temperature (25 °C). The effects of the iron and cobalt metal centers, reaction pH, and several reductants (NaBH4, nanosized zerovalent zinc (nZn0), and TiIII citrate) were systematically investigated. Based on the analysis of the products and previously published reports, a new possible defluorination pathway of branched PFOS is also proposed.


Assuntos
Complexos de Coordenação , Porfirinas , Catálise , Ácido Cítrico/química , Isomerismo , Porfirinas/química
2.
J Am Chem Soc ; 136(31): 10890-3, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25047127

RESUMO

Density functional theory calculations indicate that van der Waals fullerene dimers and larger oligomers can form interstitial electron traps in which the electrons are even more strongly bound than in isolated fullerene radical anions. The fullerenes behave like "super atoms", and the interstitial electron traps represent one-electron intermolecular σ-bonds. Spectroelectrochemical measurements on a bis-fullerene-substituted peptide provide experimental support. The proposed deep electron traps are relevant for all organic electronics applications in which non-covalently linked fullerenes in van der Waals contact with one another serve as n-type semiconductors.

3.
ACS Omega ; 6(16): 10790-10800, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-34056233

RESUMO

Breakdown and utilization of cellulose are critical for the bioenergy sector; however, current cellulose-to-energy conversion schemes often consume large quantities of unrecoverable chemicals, or are expensive, due to the need for enzymes or high temperatures. In this paper, we demonstrate a new method for converting cellulose into soluble compounds using a mixture of Fe2+ and Fe3+ as catalytic centers for the breakdown, yielding Fe3O4 nanoparticles during the hydrothermal process. Iron precursors transformed more than 61% of microcrystalline cellulose into solutes, with the composition of the solute changing with the initial Fe3+ concentration. The primary products of the breakdown of cellulose were a range of aldaric acids with different molecular weights. The nanoparticles have concentration-dependent tuneable sizes between 6.7 and 15.8 nm in diameter. The production of value-added nanomaterials at low temperatures improves upon the economics of traditional cellulose-to-energy conversion schemes with the precursor value increasing rather than deteriorating over time.

4.
RSC Adv ; 11(29): 17642-17645, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35480216

RESUMO

Ceric(iv) ammonium nitrate (CAN) in aqueous medium acts as an excellent precipitating agent for perfluorooctanesulfonic acid (PFOS). The Ce(iv) center plays a crucial role. Interestingly, Ce(iii) chloride showed much less effectiveness under similar conditions. The efficacy of CAN was reduced upon changing the substrate to perfluorooctanoic acid (PFOA).

5.
Antibiotics (Basel) ; 10(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34438963

RESUMO

Clostridioides (also known as Clostridium) difficile is a Gram-positive anaerobic, spore producing bacterial pathogen that causes severe gastrointestinal infection in humans. The current chemotherapeutic options are inadequate, expensive, and limited, and thus inexpensive drug treatments for C. difficile infection (CDI) with improved efficacy and specificity are urgently needed. To improve the solubility of our cationic amphiphilic 1,1'-binaphthylpeptidomimetics developed earlier that showed promise in an in vivo murine CDI model we have synthesized related compounds with an N-arytriazole or N-naphthyltriazole moiety instead of the 1,1'-biphenyl or 1,1'-binaphthyl moiety. This modification was made to increase the polarity and thus water solubility of the overall peptidomimetics, while maintaining the aromatic character. The dicationic N-naphthyltriazole derivative 40 was identified as a C. difficile-selective antibacterial with MIC values of 8 µg/mL against C. difficile strains ATCC 700057 and 132 (both ribotype 027). This compound displayed increased water solubility and reduced hemolytic activity (32 µg/mL) in an in vitro hemolysis assay and reduced cytotoxicity (CC50 32 µg/mL against HEK293 cells) relative to lead compound 2. Compound 40 exhibited mild efficacy (with 80% survival observed after 24 h compared to the DMSO control of 40%) in an in vivo murine model of C. difficile infection by reducing the severity and slowing the onset of disease.

6.
Bioorg Med Chem ; 18(17): 6329-39, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20674371

RESUMO

Influenza virus infection constitutes a significant health problem in need of more effective therapies. We have recently identified ((2R,3S,4R,5R)-3-acetoxy-5-(4-benzamido-2-oxopyrimidin-1(2H)-yl)-4-fluoro-3,4-dimethyl-tetrahydrofuran-2-yl) methyl benzoate (18c) as a potent influenza virus inhibitor. We now here report the synthesis and evaluation of a series of C-3' modified ribose nucleosides. These novel compounds were prepared, primarily by taking known ((2R,3R,4R)-3-benzoyloxy-4-fluoro-4-methyl-5-oxo-tetrahydrofuran-2-yl)methyl benzoate (1) and converting it in to C-3 keto sugar (7), reacting C-3 keto group with methyl magnesium bromide, followed by coupling these sugars with purine and pyrimidine bases. Anti influenza viral activity was determined by screening against both A and B viral strains.


Assuntos
Antivirais/síntese química , Nucleosídeos de Purina/química , Nucleosídeos de Purina/farmacologia , Nucleosídeos de Pirimidina/síntese química , Nucleosídeos de Pirimidina/farmacologia , Animais , Antivirais/farmacologia , Linhagem Celular , Cães , Humanos , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa