Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Environ Sci Technol ; 57(36): 13325-13335, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37643004

RESUMO

To estimate the bioconcentration factor (BCF), the in vitro intrinsic clearance (CLIN VITRO,INT) from rainbow trout liver S9 fractions (RT-S9) can be applied to in vitro-in vivo extrapolation (IVIVE) models, yet uncertainties remain in model parameterization. An alternative model approach is evaluated: a regression model was built in the form log BCF = a × log Kow + b × log CLIN VITRO,INT. The coefficients a and b were fitted based on a training set of 40 chemicals. A high robustness of the coefficients and good accuracy of BCF prediction were found on independent datasets of neutral organic chemicals (measured log Kow 3.3-6.2). BCF predictions were similar to or in better agreement with in vivo BCFs compared to IVIVE models (2.4- to 2.9- vs 2.8- to 3.6-fold misprediction) for training and test sets. Species-matched models (trout, carp) did not result in improvements. This study presents the largest dataset on CLIN VITRO,INT and BCFs to assess predictivity of the RT-S9 assay. The robustness of the regression statistics on different datasets and the high statistical weight of the CLIN VITRO,INT term illustrate the predictive power of the RT-S9 assay as an important step toward regulatory acceptance to replace animal experiments.


Assuntos
Bioensaio , Peixes , Animais , Bioacumulação , Cinética , Incerteza
2.
Environ Sci Technol ; 54(15): 9483-9494, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32633948

RESUMO

In vitro biotransformation rates were determined for 30 chemicals, mostly fragrance ingredients, using trout liver S9 fractions (RT-S9) and incorporated into in vitro-in vivo extrapolation (IVIVE) models to predict bioconcentration factors (BCFs). Predicted BCFs were compared against empirical BCFs to explore potential major uncertainties involved in the in vitro methods and IVIVE models: (i) in vitro chemical test concentrations; (ii) different gill uptake rate constant calculations (k1); (iii) protein binding (different calculations and measurement of the fraction of unbound chemical, fU); (iv) species differences; and (v) extrahepatic biotransformation. Predicted BCFs were within 0.5 log units for 44% of the chemicals compared to empirical BCFs, whereas 56% were overpredicted by >0.5 log units. This trend of overprediction was reduced by alternative k1 calculations to 32% of chemicals being overpredicted. Moreover, hepatic in vitro rates scaled to whole body biotransformation rates (kB) were compared against in vivo kB estimates. In vivo kB was underestimated for 79% of the chemicals. Neither lowering the test concentration, nor incorporation of new measured fU values, nor species matching avoided the tendency to overpredict BCFs indicating that further improvements to the IVIVE models are needed or extrahepatic biotransformation plays an underestimated role.


Assuntos
Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Bioacumulação , Biotransformação , Fígado/metabolismo , Modelos Biológicos , Incerteza , Poluentes Químicos da Água/metabolismo
3.
Environ Sci Technol ; 48(16): 9486-95, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25058173

RESUMO

Bioaccumulation in aquatic species is a critical end point in the regulatory assessment of chemicals. Few measured fish bioconcentration factors (BCFs) are available for fragrance ingredients. Thus, predictive models are often used to estimate their BCFs. Because biotransformation can reduce chemical accumulation in fish, models using QSAR-estimated biotransformation rates have been developed. Alternatively, biotransformation can be measured by in vitro methods. In this study, biotransformation rates for nine fragrance ingredients were measured using trout liver S9 fractions and used as inputs to a recently refined in vitro-in vivo extrapolation (IVIVE) model. BCFs predicted by the model were then compared to (i) in vivo BCFs, (ii) BCFs predicted using QSAR-derived biotransformation rates, (iii) BCFs predicted without biotransformation, and (iv) BCFs predicted by a well-known regression model. For fragrance ingredients with relatively low (<4.7) log K(OW) values, all models predicted BCFs below a bioaccumulation threshold of 1000. For chemicals with higher (4.7-5.8) log K(OW) values, the model incorporating measured in vitro biotransformation rates and assuming no correction for potential binding effects on hepatic clearance provided the most accurate predictions of measured BCFs. This study demonstrates the value of integrating measured biotransformation rates for prediction of chemical bioaccumulation in fish.


Assuntos
Cosméticos/química , Modelos Teóricos , Oncorhynchus mykiss/metabolismo , Poluentes Químicos da Água/farmacocinética , Animais , Biotransformação , Peixes/metabolismo , Técnicas In Vitro , Fígado/efeitos dos fármacos , Fígado/metabolismo
4.
Environ Toxicol Chem ; 43(6): 1242-1249, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38557972

RESUMO

Fragrance encapsulates are widely used in consumer care applications such as fabric softeners or other liquid laundry products; they provide multiple benefits, from fragrance protection in the commercial product to a controlled release and improved sensorial experience for the consumers. Polymeric fragrance encapsulates are in the scope of the EU regulation restricting the use of intentionally added microplastic particles, and industry is actively working on innovation programs to find biodegradable alternatives. However, particular attention needs to be paid to claims that a fragrance encapsulation system is biodegradable, because biodegradation test results can vary considerably depending on how a test material is prepared, which can even lead to false-positive biodegradation test results, as shown in our study. We demonstrate the importance of the sample preparation phase of the process. We show how the biodegradation level can fluctuate from 0% to 91%, depending on how the test material is isolated from a given microcapsule slurry system, and we present a method that can be used to obtain trustworthy biodegradation results. Environ Toxicol Chem 2024;43:1242-1249. © 2024 Givaudan France SAS. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Biodegradação Ambiental , Polímeros , Perfumes
5.
Integr Environ Assess Manag ; 19(3): 775-791, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36281826

RESUMO

In order to protect European Union (EU) drinking water resources from chemical contamination, criteria for identifying persistent, mobile, and toxic (PMT) chemicals and very persistent and very mobile (vPvM) chemicals under the EU REACH Regulation were proposed by the German Environment Agency (Umweltbundesamt-UBA). Additionally, new hazard classes for PMT and vPvM substances in the revised EU classification, labeling, and packaging (CLP Regulation) are intended. Therefore, a reliable approach in the identification of potential drinking water resource contaminants is needed. The scientific basis of the property-based PMT/vPvM criteria, focusing on mobility, which dictates the migration of chemical drinking water sources, was evaluated, and a critical analysis of the deviation of sorption metrics from simple behavior was carried out. Based on our evaluation, a Koc may be used for nonionic substances on a screening level only, requiring a higher tier assessment. It is considered inappropriate for hydrophilic and ionizable chemicals, particularly for soils with low organic carbon contents. The nonextractable residue formation is complex and not well understood but remains significant in limiting the mobility of chemicals through soils and sediments. In order to inform the EU commission's work on the introduction of new hazard classes for PMT and vPvM substances into the European legislation, the derivation of a tiered approach is proposed, which utilizes the weight of evidence available, with adoption of appropriate higher tier models commensurate with the nature of the substance and the data available. Integr Environ Assess Manag 2023;19:775-791. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Água Potável , Ecotoxicologia , Recursos Hídricos , União Europeia , Solo , Medição de Risco
6.
Chemosphere ; 278: 130409, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34126677

RESUMO

Testing and assessing the persistency, bioaccumulative and toxic properties of UVCBs (substances of Unknown or Variable composition, Complex reaction products or Biological materials) pose major technical and analytical challenges. The main aim of this study was to combine whole substance biodegradation testing with constituent specific analytics for determining primary biodegradation kinetics of the main UVCB constituents. An additional aim was to link the primary biodegradation kinetics of the main constituents to the bioaccumulation potential and baseline toxicity potential of the UVCB. Two closed biodegradation experiments were conducted using similar test systems but different analyses. The model substance, cedarwood Virginia oil, was tested at a low concentration and wastewater treatment plant effluent served as inoculum. We used microvolume solvent spiking for a quantitative mass transfer of the UVCB, while avoiding that co-solvent degradation would lead to anaerobic conditions. The biodegradation of UVCB constituents was determined with automated solid-phase microextraction coupled to GC-MS/MS using targeted analysis for main constituents and non-targeted analysis for minor constituents and non-polar degradation products. Primary biodegradation kinetics of main constituents, accounting for 73% w/w of the mixture, were successfully determined with degradation rate constants ranging from 0.09 to 0.25 d-1. Minor constituents were also degraded and non-polar degradation products were not observed. Finally, the bioaccumulation potential and baseline toxicity potential of the mixture at test start were calculated and both parameters decreased then substantially. The strength of the new approach is the possibility of biodegradation testing of a whole UVCB at low concentration while generating constituent specific biodegradation kinetics.


Assuntos
Óleos Voláteis , Espectrometria de Massas em Tandem , Biodegradação Ambiental , Cinética , Virginia
7.
Mutat Res ; 702(2): 230-6, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-20438860

RESUMO

The reference genotoxic agents 5-fluorouracil (a nucleoside analogue, characterised by a steep dose response profile), colchicine (an aneugen that inhibits tubulin polymerisation), benzo[a]pyrene (a polycyclic aromatic hydrocarbon requiring metabolic activation) and cytosine arabinoside (a nucleoside analogue that inhibits the gap-filling step of excision repair) were tested in the in vitro micronucleus assay using the Chinese hamster V79 cell line at Covance Laboratories, Harrogate, UK. All chemicals were treated in the absence and presence of cytokinesis block (via addition of cytochalasin B) with this work forming part of a collaborative evaluation of the toxicity measures recommended in the draft OECD Test Guideline 487 on the In Vitro Mammalian Cell Micronucleus Test (MNvit). The toxicity measures used, detecting a possible combination of both cytostasis and cell death (though not cell death directly), were relative population doubling, relative increase in cell counts and relative cell counts for treatments in the absence of cytokinesis block, and replication index in the presence of cytokinesis block. All of the chemicals tested either gave marked increases in the percentage of micronucleated cells with and without cytokinesis block, or did not induce micronuclei at concentrations giving approximately 50-60% toxicity (cytostasis and cell death) or less by all of the toxicity measures used. The outcome from this series of tests supports the use of relative increase in cell counts and relative population doubling, as well as relative cell counts, as appropriate measures of cytotoxicity for the non-cytokinesis blocked in vitro micronucleus assay.


Assuntos
Testes para Micronúcleos/métodos , Mutagênicos/toxicidade , Animais , Benzo(a)pireno/toxicidade , Contagem de Células , Linhagem Celular , Colchicina/toxicidade , Cricetinae , Cricetulus , Citarabina/toxicidade , Citocalasina B/farmacologia , Citocinese , Fluoruracila/toxicidade , Guias como Assunto , Reino Unido
8.
Mutat Res ; 702(2): 237-47, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-20478394

RESUMO

The reference genotoxic agents 2-aminoanthracene (a metabolism dependent weak clastogen), 5-fluorouracil (a nucleoside analogue, characterised by a steep dose response profile), colchicine (an aneugen that inhibits tubulin polymerisation), benzo[a]pyrene (a polycyclic aromatic hydrocarbon requiring metabolic activation), cadmium chloride (an inorganic carcinogen), and cytosine arabinoside (a nucleoside analogue that inhibits the gap-filling step of excision repair) were tested in the in vitro micronucleus assay using the Chinese hamster ovary (CHO) cell line at Covance Laboratories, Harrogate, UK. All chemicals were treated in the absence and presence of cytokinesis block (via addition of cytochalasin B) with this work forming part of a collaborative evaluation of the toxicity measures recommended in the draft OECD Test Guideline 487 on the In vitro Mammalian Cell Micronucleus Test (MNvit). The toxicity measures used, detecting a possible combination of both cytostasis and cell death (though not cell death directly), were relative population doubling, relative increase in cell counts and relative cell counts for treatments in the absence of cytokinesis block, and replication index in the presence of cytokinesis block. All of the chemicals tested either gave marked positive increases in the percentage of micronucleated cells with and without cytokinesis block, or did not induce micronuclei at concentrations giving approximately 50-60% toxicity (cytostasis and cell death) or less by all of the toxicity measures used. The outcome from this series of tests supports the use of relative increase in cell counts and relative population doubling, as well as relative cell counts, as appropriate measures of cytotoxicity for the non-cytokinesis blocked in vitro micronucleus assay.


Assuntos
Testes para Micronúcleos/métodos , Mutagênicos/toxicidade , Animais , Antracenos/toxicidade , Benzo(a)pireno/toxicidade , Células CHO , Cloreto de Cádmio/toxicidade , Contagem de Células , Proliferação de Células , Colchicina/toxicidade , Cricetinae , Cricetulus , Citarabina/toxicidade , Citocalasina B/farmacologia , Feminino , Fluoruracila/toxicidade , Guias como Assunto , Reino Unido
9.
Environ Toxicol Chem ; 39(11): 2097-2108, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32780492

RESUMO

Substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs) pose unique risk assessment challenges to regulators and to product registrants. These substances can contain many constituents, sometimes partially unknown and/or variable, depending on fluctuations in their source material and/or manufacturing process. International regulatory agencies have highlighted the difficulties in characterizing UVCBs and assessing their toxicity and environmental fate. Several industrial sectors have attempted to address these issues by developing frameworks and characterization methods. Based on the output of a 2016 workshop, this critical review examines current practices for UVCB risk assessment and reveals a need for a multipronged and transparent approach integrating whole-substance and constituent-based information. In silico tools or empirical measurements can provide information on discrete and/or blocks of UVCB constituents with similar hazard properties. Read-across and/or whole-substance toxicity and fate testing using adapted emerging methods can provide whole-substance information. Continued collaboration of stakeholders representing government, industry, and academia will facilitate the development of practical testing strategies and guidelines for addressing regulatory requirements for UVCBs. Environ Toxicol Chem 2020;39:2097-2108. © 2020 Health and Environmental Sciences Institute. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Ecotoxicologia , Poluentes Ambientais/toxicidade , Medição de Risco , Bioacumulação , Simulação por Computador
10.
Artigo em Inglês | MEDLINE | ID: mdl-26232254

RESUMO

Accumulated evidence has shown that in vitro mammalian cell genotoxicity assays produce high frequencies of "misleading" positive results, i.e. predicted hazard is not confirmed in in vivo and/or carcinogenicity studies [1], raising the question of relevance to human risk assessment. A recent study of micronucleus (MN) induction [2] showed that commonly used p53-deficient rodent cell lines (CHL, CHO and V79) gave a higher frequency of "misleading" positive results with 9 non-DNA reactive, Ames-negative and in vivo negative chemicals [3] than human p53-competent cells (blood lymphocytes, TK6 and HepG2 cell lines). This raised the question of whether these differences were due to p53 status or species origin. This present study compared human versus mouse and p53-competent versus p53-mutated function. The same 9 chemicals were tested for induction of MN in mouse lymphoma L5178Y (mutated p53), human TK6 (functional p53) and WIL2-NS (TK6 related, with mutated p53) cells. Six chemicals provided clear positive increases in MN frequency in at least one cell type. L5178Y cells yielded clear positive responses with more chemicals than either TK6 or WIL2-NS, indicating origin rather than p53 functionality was most relevant. Apoptosis induction (measured via caspase-3/7) was also investigated with clear differences in the timing and extent of apoptosis induction between mouse and human cells noted. With curcumin in TK6 cells, induction of caspase-3/7 activity coincided with MN induction, whereas for L5178Y cells, MN induction occurred in the absence of increased caspase activity. By contrast, with MMS in TK6 cells, MN induction preceded increased caspase-3/7 activity. These data suggest that MN induction by "misleading positive" genotoxins in p53-competent human cell lines may result from apoptosis, whereas in p53-defective rodent cells such as L5178Y, MN induction may be independent of apoptosis.


Assuntos
Apoptose/genética , Testes para Micronúcleos/métodos , Mutação , Proteína Supressora de Tumor p53/genética , Acrilatos/farmacologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Clorofenóis/farmacologia , Curcumina/farmacologia , Citocalasina B/farmacologia , Dano ao DNA , Relação Dose-Resposta a Droga , Eugenol/farmacologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Camundongos , Nitrofenóis/farmacologia , Compostos Orgânicos/farmacologia , Anidridos Ftálicos/farmacologia , Galato de Propila/farmacologia , Reprodutibilidade dos Testes , Resorcinóis/farmacologia , ortoaminobenzoatos/farmacologia
11.
Environ Toxicol Chem ; 30(5): 1096-108, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21305583

RESUMO

Sesquiterpenes are ubiquitous in essential oils but an assessment of their environmental behavior is still required for their use as components of natural fragrance ingredients and oral care flavors. Persistency plays a key role in hazard and risk assessment, but the current knowledge on the biodegradation of sesquiterpenes in the aquatic environment is limited. This could have important consequences for the persistent, bioaccumulative and toxic (PBT) assessment of essential oils because most of the sesquiterpene components have a log K(OW) of >4.5 and are identified as potentially bioaccumulating according to REACH screening criteria. In the present study, a persistency screening assessment was conducted on 11 cyclic sesquiterpenes selected from 10 different families of sesquiterpenes characterized by their carbon skeleton. Current biodegradation prediction models (BioWin™, BioHCwin, and Catalogic) were found to be of limited use because most of the sesquiterpenes studied were outside the structural domain of the models. Aerobic biodegradation was measured in a standard or prolonged Organisation for Economic Co-operation and Development (OECD) 301F Manometric Respirometry test for ready biodegradability. α-Bisabolol, α-humulene, ß-caryophyllene, α-cedrene, cedrol, longifolene, and δ-cadinene exceeded the pass level of 60% degradation and can be regarded as not persistent. Alpha-gurjunene, himachalenes (α, ß, γ), and (-)-thujopsene almost achieved the pass level reaching between 51% and 56% ultimate biodegradation. Although germacrene D only achieved 24% ultimate biodegradation, specific analysis at the end of the test did indicate complete primary degradation. Given that the shape of the biodegradation curves indicates poor bioavailability and ready biodegradability tests are very stringent, it is expected that all the sesquiterpenes tested in the present study would be degraded under environmental conditions.


Assuntos
Óleos Voláteis/metabolismo , Sesquiterpenos/metabolismo , Poluentes Químicos da Água/metabolismo , Aerobiose , Bactérias/metabolismo , Biodegradação Ambiental , Óleos Voláteis/análise , Relação Quantitativa Estrutura-Atividade , Sesquiterpenos/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa