Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pept Sci ; 27(10): e3339, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34008255

RESUMO

Ergothioneine (EGT) is the betaine of 2-thiohistidine (2-thioHis) and may be the last undiscovered vitamin. EGT cannot be incorporated into a peptide because the α-nitrogen is trimethylated, although this would be advantageous as an EGT-like moiety in a peptide would impart unique antioxidant and metal chelation properties. The amino acid 2-thioHis is an analogue of EGT and can be incorporated into a peptide, although there is only one reported occurrence of this in the literature. A likely reason is the harsh conditions reported for protection of the thione, with similarly harsh conditions used in order to achieve deprotection after synthesis. Here, we report a novel strategy for the incorporation of 2-thioHis into peptides in which we decided to leave the thione unprotected. This decision was based upon the reported low reactivity of EGT with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), a very electrophilic disulfide. This strategy was successful, and we report here the synthesis of 2-thioHis analogues of carnosine (ßAH), GHK-tripeptide, and HGPLGPL. Each of these peptides contain a histidine (His) residue and possesses biological activity. Our results show that substitution of His with 2-thioHis imparts strong antioxidant, radical scavenging, and copper binding properties to the peptide. Notably, we found that the 2-thioHis analogue of GHK-tripeptide was able to completely quench the hydroxyl and ABTS radicals in our assays, and its antioxidant capacity was significantly greater than would be expected based on the antioxidant capacity of free 2-thioHis. Our work makes possible greater future use of 2-thioHis in peptides.


Assuntos
Ergotioneína , Antioxidantes , Histidina , Peptídeos
2.
J Pept Sci ; 25(10): e3209, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31410953

RESUMO

Historically, methods to remove the 4-methoxybenzyl (Mob)-protecting group from selenocysteine (Sec) in peptides have used harsh and toxic reagents. The use of 2,2'-dithiobis-5-nitropyridine (DTNP) is an improvement over these methods; however, many wash steps are required to remove the by-product contaminant 5-nitro-2-thiopyridine. Even with many washes, excess DTNP adheres to the peptide. The final product needs excess purification to remove these contaminants. It was recently discovered by our group that hindered hydrosilanes could be used to reduce Cys(Mob). We sought to apply a similar methodology to reduce Sec(Mob), which we expected to be even more labile. Here, we present a gentle and facile method for deprotection of Sec(Mob) using triethylsilane (TES), phenol, and a variety of other scavengers often used in deprotection cocktails. The different cocktails were all incubated at 40 °C for 4 hours. The combination of TFA/TES/thioanisole (96:2:2) appeared to be the most efficient of the cocktails tested, providing complete deprotection and yielded peptide that was mainly in the diselenide form. This cocktail also showed no evidence of side reactions or significant contaminants in the high-performance liquid chromatography (HPLC) and mass spectral (MS) analyses. We envision that our new method will allow for a simple and gentle "one-pot" deprotection of Sec(Mob) following solid-phase peptide synthesis and will minimize the need for extensive purification steps.


Assuntos
Peptídeos/química , Peptídeos/síntese química , Selenocisteína/química , Técnicas de Síntese em Fase Sólida , Sequência de Aminoácidos
3.
Antioxidants (Basel) ; 11(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35204068

RESUMO

Ergothioneine (EGT) is a sulfur-containing amino acid analog that is biosynthesized in fungi and bacteria, accumulated in plants, and ingested by humans where it is concentrated in tissues under oxidative stress. While the physiological function of EGT is not yet fully understood, EGT is a potent antioxidant in vitro. Here we report that oxidized forms of EGT, EGT-disulfide (ESSE) and 5-oxo-EGT, can be reduced by the selenoenzyme mammalian thioredoxin reductase (Sec-TrxR). ESSE and 5-oxo-EGT are formed upon reaction with biologically relevant reactive oxygen species. We found that glutathione reductase (GR) can reduce ESSE, but only with the aid of glutathione (GSH). The reduction of ESSE by TrxR was found to be selenium dependent, with non-selenium-containing TrxR enzymes having little or no ability to reduce ESSE. In comparing the reduction of ESSE by Sec-TrxR in the presence of thioredoxin to that of GR/GSH, we find that the glutathione system is 10-fold more efficient, but Sec-TrxR has the advantage of being able to reduce both ESSE and 5-oxo-EGT directly. This represents the first discovered direct enzymatic recycling system for oxidized forms of EGT. Based on our in vitro results, the thioredoxin system may be important for EGT redox biology and requires further in vivo investigation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa