Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Neurobiol Dis ; 149: 105229, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33352233

RESUMO

Alpha-synuclein (a-syn) can aggregate and form toxic oligomers and insoluble fibrils which are the main component of Lewy bodies. Intra-neuronal Lewy bodies are a major pathological characteristic of Parkinson's disease (PD). These fibrillar structures can act as seeds and accelerate the aggregation of monomeric a-syn. Indeed, recent studies show that injection of preformed a-syn fibrils (PFF) into the rodent brain can induce aggregation of the endogenous monomeric a-syn resulting in neuronal dysfunction and eventual cell death. We injected 8 µg of murine a-syn PFF, or soluble monomeric a-syn into the right striatum of rats. The animals were monitored behaviourally using the cylinder test, which measures paw asymmetry, and the corridor task that measures lateralized sensorimotor response to sugar treats. In vivo PET imaging was performed after 6, 13 and 22 weeks using [11C]DTBZ, a marker of the vesicular monoamine 2 transporter (VMAT2), and after 15 and 22 weeks using [11C]UCB-J, a marker of synaptic SV2A protein in nerve terminals. Histology was performed at the three time points using antibodies against dopaminergic markers, aggregated a-syn, and MHCII to evaluate the immune response. While the a-syn PFF injection caused only mild behavioural changes, [11C]DTBZ PET showed a significant and progressive decrease of VMAT2 binding in the ipsilateral striatum. This was accompanied by a small progressive decrease in [11C]UCB-J binding in the same area. In addition, our histological analysis revealed a gradual spread of misfolded a-syn pathology in areas anatomically connected to striatum that became bilateral with time. The striatal a-syn PFF injection resulted in a progressive unilateral degeneration of dopamine terminals, and an early and sustained presence of MHCII positive ramified microglia in the ipsilateral striatum and substantia nigra. Our study shows that striatal injections of a-syn fibrils induce progressive pathological synaptic dysfunction prior to cell death that can be detected in vivo with PET. We confirm that intrastriatal injection of a-syn PFFs provides a model of progressive a-syn pathology with loss of dopaminergic and synaptic function accompanied by neuroinflammation, as found in human PD.


Assuntos
Corpo Estriado/metabolismo , Progressão da Doença , Neurônios Dopaminérgicos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Agregados Proteicos/fisiologia , alfa-Sinucleína/toxicidade , Animais , Corpo Estriado/imunologia , Corpo Estriado/patologia , Neurônios Dopaminérgicos/imunologia , Neurônios Dopaminérgicos/patologia , Feminino , Injeções Intraventriculares , Ratos , Ratos Sprague-Dawley , alfa-Sinucleína/administração & dosagem , alfa-Sinucleína/imunologia
3.
Alzheimers Dement ; 14(8): 1052-1062, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29604263

RESUMO

INTRODUCTION: The ability of Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers (amyloid ß peptide 1-42, total tau, and phosphorylated tau) to discriminate AD from related disorders is limited. Biomarkers for other concomitant pathologies (e.g., CSF α-synuclein [α-syn] for Lewy body pathology) may be needed to further improve the differential diagnosis. METHODS: CSF total α-syn, phosphorylated α-syn at Ser129, and AD CSF biomarkers were evaluated with Luminex immunoassays in 367 participants, followed by validation in 74 different neuropathologically confirmed cases. RESULTS: CSF total α-syn, when combined with amyloid ß peptide 1-42 and either total tau or phosphorylated tau, improved the differential diagnosis of AD versus frontotemporal dementia, Lewy body disorders, or other neurological disorders. The diagnostic accuracy of the combined models attained clinical relevance (area under curve ∼0.9) and was largely validated in neuropathologically confirmed cases. DISCUSSION: Combining CSF biomarkers representing AD and Lewy body pathologies may have clinical value in the differential diagnosis of AD.


Assuntos
Doença de Alzheimer/diagnóstico , Diagnóstico Diferencial , alfa-Sinucleína/líquido cefalorraquidiano , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Amiloide/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Feminino , Humanos , Doença por Corpos de Lewy/líquido cefalorraquidiano , Doença por Corpos de Lewy/diagnóstico , Masculino , Fosforilação , Proteínas tau/líquido cefalorraquidiano
4.
Neurobiol Dis ; 106: 49-62, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28648742

RESUMO

Variations in the α-synuclein-encoding SNCA gene represent the greatest genetic risk factor for Parkinson's disease (PD), and duplications/triplications of SNCA cause autosomal dominant familial PD. These facts closely link brain levels of α-synuclein with the risk of PD, and make lowering α-synuclein levels a therapeutic strategy for the treatment of PD and related synucleinopathies. In this paper, we corroborate previous findings on the ability of overexpressed Polo-like kinase 2 (PLK-2) to decrease cellular α-synuclein, but demonstrate that the process is independent of PLK-2 phosphorylating S129 in α-synuclein because a similar reduction is achieved with the non-phosphorable S129A mutant α-synuclein. Using a specific PLK-2 inhibitor (compound 37), we demonstrate that endogenous PLK-2 phosphorylates S129 only in some cells, but increases α-synuclein protein levels in all tested cell cultures and brain slices. PLK-2 is found to regulate the transcription of α-synuclein mRNA from both the endogenous mouse SNCA gene and transgenic vectors that only contain the open reading frame. Moreover, we are the first to show that regulation of α-synuclein by PLK-2 is of physiological importance since 10days' inhibition of endogenous PLK-2 in wt C57BL/6 mice increases endogenous α-synuclein protein levels. Our findings collectively demonstrate that PLK-2 regulates α-synuclein levels by a previously undescribed transcription-based mechanism. This mechanism is active in cells and brain tissue, opening up for alternative strategies for modulating α-synuclein levels and thereby for the possibility of modifying disease progression in synucleinopaties.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/biossíntese , alfa-Sinucleína/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Fases de Leitura Aberta , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes/metabolismo , Transcrição Gênica/fisiologia , alfa-Sinucleína/genética
5.
Brain ; 137(Pt 5): 1496-513, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24662516

RESUMO

In Parkinson's disease and dementia with Lewy bodies, α-synuclein aggregates to form oligomers and fibrils; however, the precise nature of the toxic α-synuclein species remains unclear. A number of synthetic α-synuclein mutations were recently created (E57K and E35K) that produce species of α-synuclein that preferentially form oligomers and increase α-synuclein-mediated toxicity. We have shown that acute lentiviral expression of α-synuclein E57K leads to the degeneration of dopaminergic neurons; however, the effects of chronic expression of oligomer-prone α-synuclein in synapses throughout the brain have not been investigated. Such a study could provide insight into the possible mechanism(s) through which accumulation of α-synuclein oligomers in the synapse leads to neurodegeneration. For this purpose, we compared the patterns of neurodegeneration and synaptic damage between a newly generated mThy-1 α-synuclein E57K transgenic mouse model that is prone to forming oligomers and the mThy-1 α-synuclein wild-type mouse model (Line 61), which accumulates various forms of α-synuclein. Three lines of α-synuclein E57K (Lines 9, 16 and 54) were generated and compared with the wild-type. The α-synuclein E57K Lines 9 and 16 were higher expressings of α-synuclein, similar to α-synuclein wild-type Line 61, and Line 54 was a low expressing of α-synuclein compared to Line 61. By immunoblot analysis, the higher-expressing α-synuclein E57K transgenic mice showed abundant oligomeric, but not fibrillar, α-synuclein whereas lower-expressing mice accumulated monomeric α-synuclein. Monomers, oligomers, and fibrils were present in α-synuclein wild-type Line 61. Immunohistochemical and ultrastructural analyses demonstrated that α-synuclein accumulated in the synapses but not in the neuronal cells bodies, which was different from the α-synuclein wild-type Line 61, which accumulates α-synuclein in the soma. Compared to non-transgenic and lower-expressing mice, the higher-expressing α-synuclein E57K mice displayed synaptic and dendritic loss, reduced levels of synapsin 1 and synaptic vesicles, and behavioural deficits. Similar alterations, but to a lesser extent, were seen in the α-synuclein wild-type mice. Moreover, although the oligomer-prone α-synuclein mice displayed neurodegeneration in the frontal cortex and hippocampus, the α-synuclein wild-type only displayed neuronal loss in the hippocampus. These results support the hypothesis that accumulating oligomeric α-synuclein may mediate early synaptic pathology in Parkinson's disease and dementia with Lewy bodies by disrupting synaptic vesicles. This oligomer-prone model might be useful for evaluating therapies directed at oligomer reduction.


Assuntos
Encéfalo/patologia , Degeneração Neural/patologia , Neurônios/metabolismo , Sinapses/patologia , alfa-Sinucleína/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Ácido Glutâmico/genética , Humanos , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Lisina/genética , Transtornos da Memória/etiologia , Transtornos da Memória/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Degeneração Neural/genética , Degeneração Neural/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo , alfa-Sinucleína/genética
6.
Brain ; 136(Pt 2): 412-32, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23413261

RESUMO

Conversion of soluble α-synuclein into insoluble and fibrillar inclusions is a hallmark of Parkinson's disease and other synucleinopathies. Accumulating evidence points towards a relationship between its generation at nerve terminals and structural synaptic pathology. Little is known about the pathogenic impact of α-synuclein conversion and deposition at nigrostriatal dopaminergic synapses in transgenic mice, mainly owing to expression limitations of the α-synuclein construct. Here, we explore whether both the rat as a model and expression of the bacterial artificial chromosome construct consisting of human full-length wild-type α-synuclein could exert dopaminergic neuropathological effects. We found that the human promoter induced a pan-neuronal expression, matching the rodent α-synuclein expression pattern, however, with prominent C-terminally truncated fragments. Ageing promoted conversion of both full-length and C-terminally truncated α-synuclein species into insolube and proteinase K-resistant fibres, with strongest accumulation in the striatum, resembling biochemical changes seen in human Parkinson's disease. Transgenic rats develop early changes in novelty-seeking, avoidance and smell before the progressive motor deficit. Importantly, the observed pathological changes were associated with severe loss of the dopaminergic integrity, thus resembling more closely the human pathology.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Neurônios Dopaminérgicos/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Fenótipo , alfa-Sinucleína/genética , Animais , Modelos Animais de Doenças , Progressão da Doença , Neurônios Dopaminérgicos/metabolismo , Humanos , Doença de Parkinson/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , alfa-Sinucleína/biossíntese , alfa-Sinucleína/toxicidade
7.
J Neurosci ; 32(10): 3301-5, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22399752

RESUMO

In Parkinson's disease (PD) and other α-synucleinopathies, prefibrillar α-synuclein (αS) oligomer is implicated in the pathogenesis. However, toxic αS oligomers observed using in vitro systems are not generally seen to be associated with α-synucleinopathy in vivo. Thus, the pathologic significance of αS oligomers to αS neurotoxicity is unknown. Herein, we show that, αS that accumulate within endoplasmic reticulum (ER)/microsome forms toxic oligomers in mouse and human brain with the α-synucleinopathy. In the mouse model of α-synucleinopathy, αS oligomers initially form before the onset of disease and continue to accumulate with the disease progression. Significantly, treatment of αS transgenic mice with Salubrinal, an anti-ER stress compound that delays the onset of disease, reduces ER accumulation of αS oligomers. These results indicate that αS oligomers with toxic conformation accumulate in ER, and αS oligomer-dependent ER stress is pathologically relevant for PD.


Assuntos
Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Oligonucleotídeos/metabolismo , Oligonucleotídeos/toxicidade , alfa-Sinucleína/metabolismo , alfa-Sinucleína/toxicidade , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos , Camundongos Transgênicos , Conformação de Ácido Nucleico , Estresse Oxidativo/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia
8.
Biochemistry ; 52(51): 9097-103, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24191706

RESUMO

Soluble oligomers formed by α-synuclein (αSN) are suspected to play a central role in neuronal cell death during Parkinson's disease. While studies have probed the surface structure of these oligomers, little is known about the backbone dynamics of αSN when they form soluble oligomers. Using hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS), we have analyzed the structural dynamics of soluble αSN oligomers. The analyzed oligomers were metastable, slowly dissociating to monomers over a period of 21 days, after excess monomer had been removed. The C-terminal region of αSN (residues 94-140) underwent isotopic exchange very rapidly, demonstrating a highly dynamic region in the oligomeric state. Three regions (residues 4-17, 39-54, and 70-89) were strongly protected against isotopic exchange in the oligomers, indicating the presence of a stable hydrogen-bonded or solvent-shielded structure. The protected regions were interspersed by two somewhat more dynamic regions (residues 18-38 and 55-70). In the oligomeric state, the isotopic exchange pattern of the region of residues 35-95 of αSN corresponded well with previous nuclear magnetic resonance and electron paramagnetic resonance analyses performed on αSN fibrils and indicated a possible zipperlike maturation mechanism for αSN aggregates. We find the protected N-terminus (residues 4-17) to be of particular interest, as this region has previously been observed to be highly dynamic for both monomeric and fibrillar αSN. This region has mainly been described in relation to membrane binding of αSN, and structuring may be important in relation to disease.


Assuntos
alfa-Sinucleína/metabolismo , Medição da Troca de Deutério , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Peso Molecular , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Solubilidade , Espectrometria de Massas por Ionização por Electrospray , alfa-Sinucleína/química , alfa-Sinucleína/genética
9.
J Neurochem ; 125(2): 314-27, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23241025

RESUMO

DJ-1 is a ubiquitous protein regulating cellular viability. Recessive mutations in the PARK7/DJ-1 gene are linked to Parkinson's disease (PD). Although the most dramatic L166P point mutation practically eliminates DJ-1 protein and function, the effects of other PD-linked mutations are subtler. Here, we investigated two recently described PD-associated DJ-1 point mutations, the A179T substitution and the P158Δ in-frame deletion. [A179T]DJ-1 protein was as stable as wild-type [wt]DJ-1, but the P158Δ mutant protein was less stable. In accord with the notion that dimer formation is essential for DJ-1 protein stability, [P158Δ]DJ-1 was impaired in dimer formation. Similar to our previous findings for [M26I]DJ-1, [P158Δ]DJ-1 bound aberrantly to apoptosis signal-regulating kinase 1. Thus, the PD-associated P158Δ mutation destabilizes DJ-1 protein and function. As there is also evidence for an involvement of DJ-1 in multiple system atrophy, a PD-related α-synucleinopathy characterized by oligodendroglial cytoplasmic inclusions, we studied an oligodendroglial cell line stably expressing α-synuclein. α-Synuclein aggregate dependent microtubule retraction upon co-transfection with tubulin polymerization-promoting protein p25α was ameliorated by [wt]DJ-1. In contrast, DJ-1 mutants including P158Δ failed to protect in this system, where we found evidence of apoptosis signal-regulating kinase 1 (ASK1) involvement. In conclusion, the P158Δ point mutation may contribute to neurodegeneration by protein destabilization and hence loss of DJ-1 function.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Oncogênicas/genética , Doença de Parkinson/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Modelos Animais de Doenças , Humanos , Imunoprecipitação , Camundongos , Dados de Sequência Molecular , Atrofia de Múltiplos Sistemas/genética , Peroxirredoxinas/genética , Mutação Puntual , Prolina/genética , Proteína Desglicase DJ-1 , Estabilidade Proteica , Estrutura Quaternária de Proteína , Ratos , Transfecção
10.
Neurobiol Dis ; 56: 47-58, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23567651

RESUMO

Alpha-synuclein phosphorylated at serine 129 (S129) is highly elevated in Parkinson's disease patients where it mainly accumulates in the Lewy bodies. Several groups have studied the role of phosphorylation at the S129 in α-synuclein in a rat model for Parkinson's disease using recombinant adeno-associated viral (rAAV) vectors. The results obtained are inconsistent and accordingly the role of S129 phosphorylation in α-synuclein toxicity remains unclear. This prompted us to re-examine the neuropathological and behavioral effects of the S129 modified α-synuclein species in vivo. For this purpose, we used two mutated forms of human α-synuclein in which the S129 was replaced either with an alanine (S129A), to block phosphorylation, or with an aspartate (S129D), to mimic phosphorylation, and compared them with the wild type α-synuclein. This approach was similar in design to previous studies, however our investigation of dopaminergic degeneration also included performing a detailed study of the α-synuclein induced pathology in the striatum and the analysis of motor deficits. Our results showed that overexpressing S129D or wild type α-synuclein resulted in an accelerated dopaminergic fiber loss as compared with S129A α-synuclein. Furthermore, the motor deficit seen in the group treated with the mutant S129D α-synuclein appeared earlier than the other two forms of α-synuclein. Conversely, S129A α-synuclein showed significantly larger pathological α-synuclein-positive inclusions, and slower dopaminergic fiber loss, when compared to the other two forms of α-synuclein, suggesting a neuroprotective effect of the mutation. When examined at long-term, all three α-synuclein forms resulted in pathological accumulations of α-synuclein in striatal fibers and dopaminergic cell death in the substantia nigra. Our data show that changes in the S129 residue of α-synuclein influence the rate of pathology and neurodegeneration, with an overall deleterious effect of exchanging S129 to a residue mimicking its phosphorylated state.


Assuntos
Transtornos dos Movimentos/genética , Transtornos dos Movimentos/patologia , Mutação/fisiologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Serina/genética , alfa-Sinucleína/genética , alfa-Sinucleína/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Western Blotting , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Densitometria , Dependovirus/genética , Dopamina/fisiologia , Feminino , Vetores Genéticos , Imuno-Histoquímica , Fosforilação , Ratos , Ratos Sprague-Dawley , Transgenes
11.
NPJ Parkinsons Dis ; 9(1): 164, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092806

RESUMO

Alpha-synuclein (α-syn) aggregation and immune activation represent hallmark pathological events in Parkinson's disease (PD). The PD-associated immune response encompasses both brain and peripheral immune cells, although little is known about the immune proteins relevant for such a response. We propose that the upregulation of CD163 observed in blood monocytes and in the responsive microglia in PD patients is a protective mechanism in the disease. To investigate this, we used the PD model based on intrastriatal injections of murine α-syn pre-formed fibrils in CD163 knockout (KO) mice and wild-type littermates. CD163KO females revealed an impaired and differential early immune response to α-syn pathology as revealed by immunohistochemical and transcriptomic analysis. After 6 months, CD163KO females showed an exacerbated immune response and α-syn pathology, which ultimately led to dopaminergic neurodegeneration of greater magnitude. These findings support a sex-dimorphic neuroprotective role for CD163 during α-syn-induced neurodegeneration.

13.
Brain ; 133(Pt 3): 713-26, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20157014

RESUMO

Biomarkers are urgently needed for the diagnosis and monitoring of disease progression in Parkinson's disease. Both DJ-1 and alpha-synuclein, two proteins critically involved in Parkinson's disease pathogenesis, have been tested as disease biomarkers in several recent studies with inconsistent results. These have been largely due to variation in the protein species detected by different antibodies, limited numbers of patients in some studies, or inadequate control of several important variables. In this study, the nature of DJ-1 and alpha-synuclein in human cerebrospinal fluid was studied by a combination of western blotting, gel filtration and mass spectrometry. Sensitive and quantitative Luminex assays detecting most, if not all, species of DJ-1 and alpha-synuclein in human cerebrospinal fluid were established. Cerebrospinal fluid concentrations of DJ-1 and alpha-synuclein from 117 patients with Parkinson's disease, 132 healthy individuals and 50 patients with Alzheimer's disease were analysed using newly developed, highly sensitive Luminex technology while controlling for several major confounders. A total of 299 individuals and 389 samples were analysed. The results showed that cerebrospinal fluid DJ-1 and alpha-synuclein levels were dependent on age and influenced by the extent of blood contamination in cerebrospinal fluid. Both DJ-1 and alpha-synuclein levels were decreased in Parkinson's patients versus controls or Alzheimer's patients when blood contamination was controlled for. In the population aged > or = 65 years, when cut-off values of 40 and 0.5 ng/ml were chosen for DJ-1 and alpha-synuclein, respectively, the sensitivity and specificity for patients with Parkinson's disease versus controls were 90 and 70% for DJ-1, and 92 and 58% for alpha-synuclein. A combination of the two markers did not enhance the test performance. There was no association between DJ-1 or alpha-synuclein and the severity of Parkinson's disease. Taken together, this represents the largest scale study for DJ-1 or alpha-synuclein in human cerebrospinal fluid so far, while using newly established sensitive Luminex assays, with controls for multiple variables. We have demonstrated that total DJ-1 and alpha-synuclein in human cerebrospinal fluid are helpful diagnostic markers for Parkinson's disease, if variables such as blood contamination and age are taken into consideration.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/líquido cefalorraquidiano , Proteínas Oncogênicas/líquido cefalorraquidiano , Doença de Parkinson/líquido cefalorraquidiano , alfa-Sinucleína/líquido cefalorraquidiano , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Sangue/metabolismo , Líquido Cefalorraquidiano/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Desglicase DJ-1 , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Fatores Sexuais , Adulto Jovem
14.
Neuropathology ; 31(2): 188-93, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20667015

RESUMO

We report an incipient case of intranuclear inclusion body disease (INIBD) in a 78-year-old woman. No apparent neurological symptoms were noticed during the clinical course. Post mortem examination revealed widespread occurrence of eosinophilic intranuclear inclusions in neuronal and glial cells of the central and peripheral nervous systems, as well as in parenchymal cells of the visceral organs. The inclusions were observed more frequently in glial cells than in neuronal cells. Ultrastructurally, the inclusions consisted of granular and filamentous material. Immunohistochemically, the inclusions were positive for ubiquitin, ubiquitin-related proteins (NEDD8 ultimate buster 1, small ubiquitin modifier-1, small ubiquitin modifier-2 and p62), promyelocytic leukemia protein and abnormally expanded polyglutamine. Consistent with previous studies, the vast majority of inclusion-bearing glial cells were astrocytes. Furthermore, p25α-positive oligodendrocytes rarely contained intranuclear inclusions. These findings suggest that INIBD may occur in non-demented elderly individuals and that oligodendrocyte is also involved in the disease process of INIBD.


Assuntos
Encefalopatias/patologia , Corpos de Inclusão Intranuclear/ultraestrutura , Doenças Neurodegenerativas/patologia , Idoso , Astrócitos/patologia , Diabetes Mellitus , Feminino , Humanos , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Oligodendroglia/patologia
15.
Brain Commun ; 3(2): fcab104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34136810

RESUMO

Neuropathological observations in neurodegenerative synucleinopathies, including Parkinson disease, implicate a pathological role of α-synuclein accumulation in extranigral sites during the prodromal phase of the disease. In a transgenic mouse model of peripheral-to-central neuroinvasion and propagation of α-synuclein pathology (via hindlimb intramuscular inoculation with exogenous fibrillar α-synuclein: the M83 line, expressing the mutant human Ala53Thr α-synuclein), we studied the development and early-stage progression of α-synuclein pathology in the CNS of non-symptomatic (i.e. freely mobile) mice. By immunohistochemical analyses of phosphroylated α-synuclein on serine residue 129 (p-S129), our data indicate that the incipient stage of pathological α-synuclein propagation could be categorized in distinct phases: (i) initiation phase, whereby α-synuclein fibrillar inoculum induced pathological lesions in pools of premotor and motor neurons of the lumbar spinal cord, as early as 14 days post-inoculation; (ii) early central phase, whereby incipient α-synuclein pathology was predominantly detected in the reticular nuclei of the brainstem; and (iii) late central phase, characterized by additional sites of lesions in the brain including vestibular nuclei, deep cerebellar nuclei and primary motor cortex, with coincidental emergence of a sensorimotor deficit (mild degree of hindlimb clasping). Intriguingly, we also detected progressive α-synuclein pathology in premotor and motor neurons in the thoracic spinal cord, which does not directly innervate the hindlimb, as well as in the oligodendroglia within the white matter tracts of the CNS during this prodromal phase. Collectively, our data provide crucial insights into the spatiotemporal propagation of α-synuclein pathology in the nervous system of this rodent model of α-synucleinopathy following origin in periphery, and present a neuropathological context for the progression from pre-symptomatic stage to an early deficit in sensorimotor coordination. These findings also hint towards a therapeutic window for targeting the early stages of α-synuclein pathology progression in this model, and potentially facilitate the discovery of mechanisms relevant to α-synuclein proteinopathies. In a rodent model of synucleinopathy, Ferreira et al., delineate the spatiotemporal progression of incipient α-synuclein pathology (of peripheral origin) in the CNS. The authors show early affection of brainstem reticular nuclei in non-paralyzed mice, and pathological white matter lesions in relation to the neuronal pathology.

16.
Acta Neuropathol Commun ; 9(1): 105, 2021 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-34092244

RESUMO

Circumstantial evidence points to a pathological role of alpha-synuclein (aSyn; gene symbol SNCA), conferred by aSyn misfolding and aggregation, in Parkinson disease (PD) and related synucleinopathies. Several findings in experimental models implicate perturbations in the tissue homeostatic mechanisms triggered by pathological aSyn accumulation, including impaired redox homeostasis, as significant contributors in the pathogenesis of PD. The nuclear factor erythroid 2-related factor (NRF2/Nrf2) is recognized as 'the master regulator of cellular anti-oxidant response', both under physiological as well as in pathological conditions. Using immunohistochemical analyses, we show a robust nuclear NRF2 accumulation in post-mortem PD midbrain, detected by NRF2 phosphorylation on the serine residue 40 (nuclear active p-NRF2, S40). Curated gene expression analyses of four independent publicly available microarray datasets revealed considerable alterations in NRF2-responsive genes in the disease affected regions in PD, including substantia nigra, dorsal motor nucleus of vagus, locus coeruleus and globus pallidus. To further examine the putative role of pathological aSyn accumulation on nuclear NRF2 response, we employed a transgenic mouse model of synucleionopathy (M83 line, expressing the mutant human A53T aSyn), which manifests widespread aSyn pathology (phosphorylated aSyn; S129) in the nervous system following intramuscular inoculation of exogenous fibrillar aSyn. We observed strong immunodetection of nuclear NRF2 in neuronal populations harboring p-aSyn (S129), and found an aberrant anti-oxidant and inflammatory gene response in the affected neuraxis. Taken together, our data support the notion that pathological aSyn accumulation impairs the redox homeostasis in nervous system, and boosting neuronal anti-oxidant response is potentially a promising approach to mitigate neurodegeneration in PD and related diseases.


Assuntos
Encéfalo/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Animais , Encéfalo/metabolismo , Homeostase/imunologia , Humanos , Camundongos , Camundongos Transgênicos , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Oxirredução , Doença de Parkinson/metabolismo
17.
Eur J Neurosci ; 32(3): 409-22, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20704592

RESUMO

Lewy bodies, which are a pathological hallmark of Parkinson's disease, contain insoluble polymers of alpha-synuclein (alphasyn). Among the different modifications that can promote the formation of toxic alphasyn species, C-terminal truncation is among the most abundant alterations in patients with Parkinson's disease. In vitro, C-terminal truncated alphasyn aggregates faster and sub-stoichiometric amounts of C-terminal truncated alphasyn promote aggregation of the full-length alphasyn (alphasynFL) and induce neuronal toxicity. To address in vivo the putative stimulation of alphasyn-induced pathology by the presence of truncated alphasyn, we used recombinant adeno-associated virus to express either alphasynFL or a C-terminal truncated alphasyn (1-110) in rats. We adjusted the recombinant adeno-associated virus vector concentrations so that either protein alone led to only mild to moderate axonal pathology in the terminals of nigrostriatal dopamine neurons without frank cell loss. When these two forms of alphasyn were co-expressed at these pre-determined levels, it resulted in a more aggressive pathology in fiber terminals as well as dopaminergic cell loss in the substantia nigra. Using an antibody that did not detect the C-terminal truncated alphasyn (1-110) but only alphasynFL, we demonstrated that the co-expressed truncated protein promoted the progressive accumulation of alphasynFL and formation of larger pathological accumulations. Moreover, in the co-expression group, three of the eight animals showed apomorphine-induced turning, suggesting prominent post-synaptic alterations due to impairments in the dopamine release, whereas the mild pathology induced by either form alone did not cause motor abnormalities. Taken together these data suggest that C-terminal truncated alphasyn can interact with and exacerbate the formation of pathological accumulations containing alphasynFL in vivo.


Assuntos
Corpo Estriado/patologia , Neurônios/patologia , Substância Negra/patologia , alfa-Sinucleína/metabolismo , Análise de Variância , Animais , Corpo Estriado/metabolismo , Dependovirus/metabolismo , Dopamina/metabolismo , Imuno-Histoquímica , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
18.
Brain ; 132(Pt 4): 1093-101, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19155272

RESUMO

A number of neurodegenerative diseases including Parkinson's disease, dementia with Lewy bodies (DLB) and multiple system atrophy are characterized by the formation and intraneuronal accumulation of fibrillar aggregates of alpha-synuclein (alpha-syn) protein in affected brain regions. These and other findings suggest that the accumulation of alpha-syn in the brain plays an important role in the pathogenesis of these diseases. However, more recently it has been reported that early amyloid aggregates or 'soluble oligomers' are the pathogenic species that lead to neurodegeneration and neuronal cell death rather than the later 'mature fibrils'. In this study, we investigated the presence of alpha-syn oligomers in brain lysates prepared from frozen post-mortem brains of normal, Alzheimer's disease and DLB patients. The brain extracts were subjected to high speed centrifugation, to remove insoluble alpha-syn aggregates, followed by specific detection of soluble oligomers in the supernatants by employing FILA-1, an antibody that specifically binds to alpha-syn aggregates, but not to alpha-syn monomers, or to tau or beta-amyloid aggregates. Using this novel enzyme-linked immunosorbent assay (ELISA) method to quantify the amounts of alpha-syn oligomers in the brain extracts, our data clearly show an increase in the levels of soluble oligomers of alpha-syn in the DLB brains compared to those with Alzheimer's disease and the controls (P < 0.0001). Our findings provide strong evidence to support the contention that elevated soluble oligomers of alpha-syn are involved in the pathogenesis of DLB. Furthermore, these findings establish FILA-1 as a very sensitive tool for the detection of oligomeric forms of alpha-syn in human brain lysates.


Assuntos
Encéfalo/metabolismo , Doença por Corpos de Lewy/metabolismo , alfa-Sinucleína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/imunologia , Especificidade de Anticorpos , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Solubilidade , alfa-Sinucleína/imunologia , Proteínas tau/imunologia
19.
Neurosci Insights ; 14: 1179069519889022, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32363345

RESUMO

Recombinant adeno-associated virus (rAAV) vectors have emerged as the safe vehicles of choice for long-term gene transfer in mammalian nervous system. Recombinant adeno-associated virus-mediated localized gene transfer in adult nervous system following direct inoculation, that is, intracerebral or intrathecal, is well documented. However, recombinant adeno-associated virus delivery in defined neuronal populations in adult animals using less-invasive methods as well as avoiding ectopic gene expression following systemic inoculation remain challenging. Harnessing the capability of some recombinant adeno-associated virus serotypes for retrograde transduction may potentially address such limitations (Note: The term retrograde transduction in this manuscript refers to the uptake of injected recombinant adeno-associated virus particles at nerve terminals, retrograde transport, and subsequent transduction of nerve cell soma). In some studies, recombinant adeno-associated virus serotypes 2/6, 2/8, and 2/9 have been shown to exhibit transduction of connected neuroanatomical tracts in adult animals following lower limb intramuscular recombinant adeno-associated virus delivery in a pattern suggestive of retrograde transduction. However, an extensive side-by-side comparison of these serotypes following intramuscular delivery regarding tissue viral load, and the effect of promoter on transgene expression, has not been performed. Hence, we delivered recombinant adeno-associated virus serotypes 2/6, 2/8, or 2/9 encoding enhanced green fluorescent protein (eGFP), under the control of either cytomegalovirus (CMV) or human synapsin (hSyn) promoter, via a single unilateral hindlimb intramuscular injection in the bicep femoris of adult C57BL/6J mice. Four weeks post injection, we quantified viral load and transgene (enhanced green fluorescent protein) expression in muscle and related nervous tissues. Our data show that the select recombinant adeno-associated virus serotypes transduce sciatic nerve and groups of neurons in the dorsal root ganglia on the injected side, indicating that the intramuscular recombinant adeno-associated virus delivery is useful for achieving gene transfer in local neuroanatomical tracts. We also observed sparse recombinant adeno-associated virus viral delivery or eGFP transduction in lumbar spinal cord and a noticeable lack thereof in brain. Therefore, further improvements in recombinant adeno-associated virus design are warranted to achieve efficient widespread retrograde transduction following intramuscular and possibly other peripheral routes of delivery.

20.
Front Neurosci ; 13: 1187, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736705

RESUMO

Multiple system atrophy (MSA) is a progressive neurodegenerative disease clinically characterized by parkinsonism and cerebellar ataxia, and pathologically by oligodendrocyte α-synuclein inclusions. Genetic variants of COQ2 are associated with an increased risk for MSA in certain populations. Also, deficits in the level of coenzyme Q10 and its biosynthetic enzymes are associated with MSA. Here, we measured ATP levels and expression of biosynthetic enzymes for coenzyme Q10, including COQ2, in multiple regions of MSA and control brains. We found a reduction in ATP levels in disease-affected regions of MSA brain that associated with reduced expression of COQ2 and COQ7, supporting the concept that abnormalities in the biosynthesis of coenzyme Q10 play an important role in the pathogenesis of MSA.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa