Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(9): 14583-14592, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157319

RESUMO

Compact spectrometers facilitate non-destructive and point-of-care spectral analysis. Here we report a single-pixel microspectrometer (SPM) for visible to near-infrared (VIS-NIR) spectroscopy using MEMS diffraction grating. The SPM consists of slits, electrothermally rotating diffraction grating, spherical mirror, and photodiode. The spherical mirror collimates an incident beam and focuses the beam on the exit slit. The photodiode detects spectral signals dispersed by electrothermally rotating diffraction grating. The SPM was fully packaged within 1.7 cm3 and provides a spectral response range of 405 nm to 810 nm with an average 2.2 nm spectral resolution. This optical module provides an opportunity for diverse mobile spectroscopic applications such as healthcare monitoring, product screening, or non-destructive inspection.

2.
Adv Sci (Weinh) ; 10(34): e2304320, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37849223

RESUMO

Despite advances in microfabrication, compact spectrometers still face challenges in shrinking their size without sacrificing optical performance. Here,  the solid immersion grating microspectrometer (SIG-µSPEC) for high spectral resolution in a broad operational wavelength range is reported. The spectroscopic module incorporates a silicon microslit, index-matched lens, plane mirrors, solid immersion grating (SIG), and a CMOS line sensor within a small form factor. The SIG facilitates high angular dispersion of light on a planar focal plane, resulting in an average spectral resolution of 5.8 nm, with over 76% maximum sensitivity from 400 to 800 nm. SIG-µSPEC measures the spectral reflectance of fruits at different ripening stages, clearly revealing changes in the chlorophyll absorption band. The measured spectrum is further utilized for the precise prediction of the soluble solid content (SSC) levels, achieving a high correlation (R2 = 0.91) and a ratio of prediction-to-deviation of 2.36. This compact microspectrometer holds the potential for precise and non-invasive spectral analysis across point-of-care fields.

3.
Biomed Opt Express ; 13(3): 1497-1505, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35414975

RESUMO

A handheld confocal microscope using a rapid MEMS scanning mirror facilitates real-time optical biopsy for simple cancer diagnosis. Here we report a handheld confocal microscope catheter using high definition and high frame rate (HDHF) Lissajous scanning MEMS mirror. The broad resonant frequency region of the fast axis on the MEMS mirror with a low Q-factor facilitates the flexible selection of scanning frequencies. HDHF Lissajous scanning was achieved by selecting the scanning frequencies with high greatest common divisor (GCD) and high total lobe number. The MEMS mirror was fully packaged into a handheld configuration, which was coupled to a home-built confocal imaging system. The confocal microscope catheter allows fluorescence imaging of in vivo and ex vivo mouse tissues with 30 Hz frame rate and 95.4% fill factor at 256 × 256 pixels image, where the lateral resolution is 4.35 µm and the field-of-view (FOV) is 330 µm × 330 µm. This compact confocal microscope can provide diverse handheld microscopic applications for real-time, on-demand, and in vivo optical biopsy.

4.
Materials (Basel) ; 14(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540742

RESUMO

The objective of this study is to investigate the tribological behavior of graphene nanoplatelets (xGnPs) as nano-solid lubricants, and to evaluate their applicability to the micro-drilling of multi-directional carbon fiber-reinforced plastic (MD-CFRP). To verify the tribological effect of nano-solid lubricants, three kinds of xGnPs (xGnP C-750, xGnP M-5, and xGnP H-5), multiwall carbon nanotubes (MWCNTs), and hBN are compared by the ball-on-plate test. Of these, three xGnPs are selected as nano-solid lubricants to investigate the micro-drilling performance of MD-CFRP using nano-solid dry lubrication, and the experimental results demonstrate that all xGnPs can enhance lubrication action in terms of surface quality (delamination, uncut fiber, and inner surface) and tool wear. In particular, larger graphene nanoplatelets (xGnP M-5 and xGnP H-5) are superior to the smaller one (xGnP C-750) by guaranteeing enhanced sliding action between the tool grain and the CFRP composite.

5.
Micromachines (Basel) ; 12(7)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206955

RESUMO

A large-area and ultrathin MEMS (microelectromechanical system) mirror can provide efficient light-coupling, a large scanning area, and high energy efficiency for actuation. However, the ultrathin mirror is significantly vulnerable to diverse film deformation due to residual thin film stresses, so that high flatness of the mirror is hardly achieved. Here, we report a MEMS mirror of large-area and ultrathin membrane with high flatness by using the silicon rim microstructure (SRM). The ultrathin MEMS mirror with SRM (SRM-mirror) consists of aluminum (Al) deposited silicon nitride membrane, bimorph actuator, and the SRM. The SRM is simply fabricated underneath the silicon nitride membrane, and thus effectively inhibits the tensile stress relaxation of the membrane. As a result, the membrane has high flatness of 10.6 m-1 film curvature at minimum without any deformation. The electrothermal actuation of the SRM-mirror shows large tilting angles from 15° to -45° depending on the applied DC voltage of 0~4 VDC, preserving high flatness of the tilting membrane. This stable and statically actuated SRM-mirror spurs diverse micro-optic applications such as optical sensing, beam alignment, or optical switching.

6.
Biomed Opt Express ; 11(10): 5575-5585, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33149972

RESUMO

High-resolution fluorescent microscopic imaging techniques are in high demand to observe detailed structures or dynamic mechanisms of biological samples. Structured illumination microscopy (SIM) has grabbed much attention in super-resolution imaging due to simple configuration, high compatibility with common fluorescent molecules, and fast image acquisition. Here, we report Lissajous scanning SIM (LS-SIM) by using a high fill-factor Lissajous scanning micromirror and laser beam modulation. The LS-SIM was realized by a Lissajous scanned structured illumination module, relay optics, and a conventional fluorescent microscope. The micromirror comprises an inner mirror and an outer frame, which are scanned at pseudo-resonance with electrostatic actuation. The biaxial scanning frequencies are selected by the frequency selection rule for high fill-factor (> 80%) Lissajous scanning. Structured illumination (SI) was then realized by modulating the intensity of a laser beam at the least common multiple (LCM) of the scanning frequencies. A compact Lissajous scanned SI module containing a fiber-optic collimator and Lissajous micromirror has been fully packaged and coupled with relay optics and a fiber-based diode pumped solid state (DPSS) laser including acousto-optic-modulator (AOM). Various structured images were obtained by shifting the phase and orientation of the illumination patterns and finally mounted with a conventional fluorescent microscope. The LS-SIM has experimentally demonstrated high-resolution fluorescent microscopic imaging of reference targets and human lung cancer cell PC-9 cells. The LS-SIM exhibits the observable region in spatial frequency space over 2x, the line-edge sharpness over 1.5x, and the peak-to-valley (P-V) ratio over 2x, compared to widefield fluorescent microscopy. This method can provide a new route for advanced high-resolution fluorescent microscopic imaging.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa