RESUMO
The occurrence of PPCPs in aquatic environments and their potential adverse effects on aquatic organisms have raised worldwide concerns. To address this issue, a study was conducted to analyze 137 selected PPCPs in Korean surface waters, and an optimized risk-based prioritization was performed. The results revealed that 120 PPCPs were detected, with 98 quantified at concentrations ranging from few ng/L to 42,733 ng/L for metformin. The 95% upper confidence limit (UCL95) of the mean value of the measured environmental concentration (MEC) for Metformin was about eight times higher than the second highest compound, dimethyl phthalate, indicating that antidiabetic groups had the highest concentration among the therapeutic groups. An optimized risk-based prioritization was then assessed based on the multiplication of two indicators, the Frequency of Exceedance and the Extent of Exceedance of Predicted No-Effect Concentrations (PNECs), which can be calculated using the traditional risk quotient (RQ) approach. The study found that clotrimazole had the highest risk quotient value of 17.4, indicating a high risk to aquatic organisms, with seven and 13 compounds showing RQ values above 1 and 0.1, respectively. After considering the frequency of exceedance, clotrimazole still had the highest novel risk quotient (RQf) value of 17.4, with 99.6% of its MECs exceeding PNECs. However, the number of compounds with RQf values above 1 decreased from seven to five, with cetirizine and flubendazole being excluded. Furthermore, only 10 compounds exhibited RQf values above 0.1. The study also observed significant differences in the results between risk-based and exposure-based prioritization methods, with only five compounds, cetirizine, olmesartan, climbazole, sulfapyridine, and imidacloprid, identified in both methods. This finding highlights the importance of considering multiple methods for prioritizing chemicals, as different approaches may yield different results.
Assuntos
Cosméticos , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Cetirizina , Clotrimazol , Poluentes Químicos da Água/análise , Cosméticos/análise , Organismos Aquáticos , República da Coreia , Preparações Farmacêuticas , Medição de RiscoRESUMO
The aim of the present study was to develop (i) a technique for identifying metabolites of organic contaminants by using an in vitro system of trout S9 and liquid chromatography-high-resolution mass spectrometry-based identification method and (ii) to apply this technique to identify the interactive potential of carbamazepine on the formation rate of other metabolites. The pharmaceuticals carbamazepine and propranolol and the pesticides azoxystrobin, diazinon, and fipronil were selected as test contaminants. As a result, a total of ten metabolites were identified for the five parent substances, six of which were confirmed using reference standards. Metabolic reactions included hydroxylation, epoxidation, S-oxidation, and dealkylation. The metabolic transformation rate ranged from 0.2 to 3.5â¯pmol/mg protein/min/µmol substrate. In the binary exposure experiment with increasing carbamazepine concentration, the formation rates of diazinon and fipronil metabolites (MDI2 and MFP2, respectively) increased, while formation of metabolites of propranolol and azoxystrobin (MPR1, MPR2, MPR3, and MAZ1) slowed down. Meanwhile, S9 pre-exposed to carbamazepine produced diazoxon, a toxic metabolite of diazinon, and pyrimidinol, a less toxic metabolite, more rapidly. These results suggest that carbamazepine, a perennial environmental pollutant, might modulate the toxicity of other substances such as diazinon but further in vivo studies are needed.
Assuntos
Carbamazepina/metabolismo , Fígado/metabolismo , Praguicidas/metabolismo , Truta/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Biotransformação , Cromatografia Líquida , Técnicas In Vitro , Fígado/efeitos dos fármacos , Preparações Farmacêuticas/metabolismo , Propranolol/metabolismo , Frações Subcelulares/metabolismo , Espectrometria de Massas em TandemRESUMO
Numerous chemicals have been manufactured through industrial activities and used as consumer products since the late 18th century. Non-target analysis is a new analytical tool to detect many chemicals in environmental samples and to prioritize emerging contaminants. In this study, suspect and non-target analytical methods were optimized using gas chromatography coupled with time-of-flight (GC/TOF) to propose contaminants of emerging concern for the Arctic environment. A suspect analytical method was developed with qualification and qualifier ions, isotopic ratios, and retention times of 215 contaminants including persistent organic pollutants (POPs) to establish an in-house library. Non-target analytical method was also optimized with a deconvoluted ion chromatogram, which is a form that can possibly match the mass spectrum of the NIST library. Multiple environmental samples, such as seawater, air, soil, sediment, sludge, and iceberg, collected from the Arctic region were analyzed with suspect and non-target analysis of GC/TOF after the clean-up procedure with a solid phase extraction (SPE) cartridge. The commonly detected contaminants in the Arctic environmental samples were siloxanes, organophosphate flame retardants, phthalates, synthetic musk compounds, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons. Among them, siloxanes and organophosphate flame retardants were proposed to be contaminants of emerging concerns for the Arctic environment. This is the first report to prioritize emerging contaminants in the Arctic environment with suspect and non-target analysis of GC/TOF.
Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Retardadores de Chama/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Siloxanas/análise , Regiões Árticas , Cromatografia Gasosa , Monitoramento Ambiental/instrumentação , Camada de Gelo/química , Espectrometria de Massas , Água do Mar/química , Solo/química , Extração em Fase SólidaRESUMO
Microbial contamination in beach water poses a public health threat due to waterborne diseases. To reduce the risk of exposure to fecal contamination, informing beachgoers in advance about the microbial water quality is important. Currently, determining the level of fecal contamination takes 24 h. The objective of this study is to predict the current level of fecal contamination (enterococcus [ENT] and ) using readily available environmental variables. Artificial neural network (ANN) and support vector regression (SVR) models were constructed using data from the Haeundae and Gwangalli Beaches in Busan City. The input variables included the tidal level, air and water temperature, solar radiation, wind direction and velocity, precipitation, discharge from the wastewater treatment plant, and suspended solid concentration in beach water. The dependence of fecal contamination on the input variables was statistically evaluated; precipitation, discharge from the wastewater treatment plant, and wind direction at the two beaches were positively correlated to the changes in the two bacterial concentrations ( < 0.01), whereas solar radiation was negatively correlated ( < 0.01). The performance of the ANN model for predicting ENT and at Gwangalli Beach was significantly higher than that of the SVR model with the training dataset ( < 0.05). Based on the comparison of residual values between the predicted and observed fecal indicator bacteria concentrations in two models, the ANN demonstrated better performance than SVR. This study suggests an effective prediction method to determine whether a beach is safe for recreational use.
Assuntos
Praias , Microbiologia da Água , Monitoramento Ambiental , Fezes , Aprendizado de Máquina , República da Coreia , Qualidade da ÁguaRESUMO
The Nakdong River, the longest in Korea, has received numerous pollutants from heavily industrialized and densely populated areas while being used as a drinking water source. A number of research have reported occurrences of emerging pollutants (EPs) in the river. The results requested efficient monitoring and systematic management strategies such as EU watch list under Water Framework Directive. The aim of this study is to propose a watch list through preliminary monitoring of the river and risk-based prioritization approach. As candidates for monitoring target, 632 substances were selected based on literature and database searches. Among them, 175 substances were subjected to target screening method whereas 457 were evaluated via suspect screening. A risk-based prioritization was applied to substances quantified through target screening based on concentrations, and a scoring-based prioritization was applied to substances tentatively identified through suspect screening. Sampling campaigns (n = 12) were conducted from October 2020 to September 2021, at 8 sampling sites along the river. As a result, 130 target substances were quantified above the LOQ. Among the 21 substances whose priority score was assigned through risk-based prioritization, telmisartan and iprobenfos were identified with very high environmental risk while candesartan, TBEP, imidacloprid, azithromycin and clotrimazole were classified with high or intermediate risk. As result of the scoring system for 39 tentatively identified substances, 6 substances (benzophenone, caprolactam, metolachlor oxanilic acid, heptaethylene glycol, octaethylene glycol and pentaethylene glycol), which were then confirmed with reference standards, showed a potential environmental risk. Those substances prioritized through target and suspect screening followed by scoring systems can be a subset for the watch list and potential targets for nationwide water quality monitoring program in the future.
Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Rios , Poluentes Químicos da Água/análise , Glicóis , República da Coreia , Monitoramento AmbientalRESUMO
Personal care products (PCPs) are integral components of daily human existence, including a large number of chemicals intentionally added for functional attributes (e.g., preservatives and fragrances) or unintentionally present, such as plasticizers. This investigation aimed to optimize the methodology for target and suspect screening via liquid chromatography-high-resolution mass spectrometry, focusing on nine prevalent organic additives (comprising bisphenols A, F, and S, methyl, ethyl, propyl, and butylparaben, 5-chloro-2-methyl-4-isothiazolin-3-one, and 4-hydroxybenzoic acid). A total of 50 high-selling PCPs were purchased from the local online market as samples. In detail, PCP samples were classified into body washes, shampoos, hair conditioners, facial cleansers, body lotions, and moisture creams. For calibration, the quality assurance and quality control results demonstrated a coefficient of determination (R2) surpassing 0.999, with detection and quantification limits ranging from 2.5 to 100.0 ng/g. For recovery experiments, replicate recoveries (n = 5) ranged from 61 to 134%. In purchased PCP samples, five of the nine target compounds were detected via a target screening. Methylparaben exhibited the highest concentration (7860 mg/kg) in a facial cleanser, which is known as an endocrine-disrupting chemical. A total of 248 suspects of organic additives were screened in PCPs, leading to a tentative identification of 9. Confirmation (confidence level 1) via reference standards was achieved for three suspects, while six were tentatively identified with a confidence level of 2. This two-step extraction methodology utilizing methyl tert-butyl ether and isopropyl alcohol enabled simultaneous analysis of diverse chemical groups with distinct properties.
Assuntos
Cosméticos , Parabenos , Cosméticos/química , Cosméticos/análise , Parabenos/análise , Cromatografia Líquida/métodos , Limite de Detecção , Espectrometria de Massas/métodos , Fenóis/análise , Fenóis/química , Compostos Benzidrílicos/análise , Compostos Benzidrílicos/química , Tiazóis/análise , Tiazóis/química , Humanos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodosRESUMO
In this study, we investigated the freezing-induced acceleration of dye bleaching by chloride-activated peroxymonosulfate (PMS). It has been observed that the oxidation of chloride by PMS generates a free chlorine species, such as hypochlorous acid (HOCl), under mild acidic and circumneutral pH condition. This process is the major reason for the enhanced oxidation capacity for electron-rich organic compounds (e.g., phenol) in the chloride-PMS system. However, we demonstrated that the chloride-PMS system clearly reduced the total organic carbon concentration (TOC), whereas the HOCl system did not lead to decrease in TOC. Overall, the chemical reaction is negligible in an aqueous condition if the concentrations of reagents are low, and freezing the solution accelerates the degradation of dye pollutants remarkably. Most notably, the pseudo-first order kinetic rate constant for acid orange 7 (AO7) degradation is approximately 0.252 h-1 with 0.5 mM PMS, 1 mM NaCl, initial pH 3, and a freezing temperature of -20 °C. AO7 degradation is not observed when the solution is not frozen. According to a confocal Raman-microscope analysis and an experiment that used an extremely high dose of reactants, the freeze concentration effect is the main reason for the acceleration phenomenon. Because the freezing phenomenon is spontaneous at high latitudes and at mid-latitudes in winter, and the chloride is ubiquitous elsewhere, the frozen chloride-PMS system has potential as a method for energy-free and eco-friendly technology for the degradation of organic pollutants in cold environments.
Assuntos
Compostos Azo , Cloretos , Corantes , Congelamento , Oxirredução , Peróxidos , Poluentes Químicos da Água , Compostos Azo/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Corantes/química , Peróxidos/química , Cloretos/química , Cinética , Concentração de Íons de HidrogênioRESUMO
The routine use of chemicals in polar regions contributes to unexpected occurrence of micropollutants, with sewage discharge as a prominent pollution source. The aim of this study was to identify and quantify micropollutants in polar environments near potential point sources using non-target analysis (NTA) with liquid chromatography high-resolution mass spectrometry. Seawater samples were collected from Ny-Ålesund, Svalbard and Marian Cove, King George Island, in 2023. We tentatively identified 32 compounds with NTA, along with 105 homologous series substances. Of these, 18 substances were confirmed, and 13 were quantified using the internal standard method. Most quantified substances in the Ny-Ålesund, including caffeine, naproxen, and polyethylene glycols (PEGs), exhibited concentrations ranged from 0.9 to 770,000 ng/L. In Marian Cove, the analysis predominantly detected acetaminophen, with concentrations ranging from 13 to 35 ng/L. The findings underscore the presence and spatial distribution of emerging micropollutants resulting from wastewater discharge in polar regions.
RESUMO
This review offers a novel perspective on the environmental fate and ecotoxicological effects of tire wear particles (TWPs), ubiquitous environmental contaminants ranging in size from micrometers to millimeters (averaging 10-100 micrometers). These particles pose a growing threat due to their complex chemical composition and potential toxicity. Human exposure primarily occurs through inhalation, ingesting contaminated food and water, and dermal contact. Our review delves into the dynamic interplay between TWP composition, transformation products (TPs), and ecological impacts, highlighting the importance of considering both individual chemical effects and potential synergistic interactions. Notably, our investigation reveals that degradation products of certain chemicals, such as diphenylguanidine (DPG) and diphenylamine (DPA), can be more toxic than the parent compounds, underscoring the need to fully understand these contaminants' environmental profile. Furthermore, we explore the potential human health implications of TWPs, emphasizing the need for further research on potential respiratory, cardiovascular, and endocrine disturbances. Addressing the challenges in characterizing TWPs, assessing their environmental fate, and understanding their potential health risks requires a multidisciplinary approach. Future research should prioritize standardized TWP characterization and leachate analysis methods, conduct field studies to enhance ecological realism, and utilize advanced analytical techniques to decipher complex mixture interactions and identify key toxicants. By addressing these challenges, we can better mitigate the environmental and health risks associated with TWPs and ensure a more sustainable future.
RESUMO
Urban surface runoff contains chemicals that can negatively affect water quality. Urban runoff studies have determined the transport dynamics of many legacy pollutants. However, less attention has been paid to determining the first-flush effects (FFE) of emerging micropollutants using suspect and non-target screening (SNTS). Therefore, this study employed suspect and non-target analyses using liquid chromatography-high resolution mass spectrometry to detect emerging pollutants in urban receiving waters during stormwater events. Time-interval sampling was used to determine occurrence trends during stormwater events. Suspect screening tentatively identified 65 substances, then, their occurrence trend was grouped using correlation analysis. Non-target peaks were prioritized through hierarchical cluster analysis, focusing on the first flush-concentrated peaks. This approach revealed 38 substances using in silico identification. Simultaneously, substances identified through homologous series observation were evaluated for their observed trends in individual events using network analysis. The results of SNTS were normalized through internal standards to assess the FFE, and the most of tentatively identified substances showed observed FFE. Our findings suggested that diverse pollutants that could not be covered by target screening alone entered urban water through stormwater runoff during the first flush. This study showcases the applicability of the SNTS in evaluating the FFE of urban pollutants, offering insights for first-flush stormwater monitoring and management.
Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Chuva , Monitoramento Ambiental/métodos , Movimentos da Água , Poluentes Ambientais/análise , Espectrometria de MassasRESUMO
Acetyl tributyl citrate (ATBC) and acetyl triethyl citrate (ATEC) are widely used as plasticizers, but their metabolites as exposure biomarkers for biomonitoring, as well as approximate human metabolic pathways, are not well understood. This study addresses this knowledge gap by conducting suspect screening to propose specific metabolites in human urine as potential biomarkers of exposure and explore their kinetic profiles. Ten volunteers were administered deuterium labeled ATBC (ATBC-d3) and seven received ATEC or deuterium labeled ATEC (ATEC-d3), with urine samples collected over 48 h post-administration. Employing ultra-performance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UPLC-qTOF/MS), six metabolites of ATBC were consistently detected, including (OH)3-ATBC-d3, ADBC-d3, OH-ADBC-d3, DBC, OH-DBC, and OH-DBA. For ATEC, four metabolites were identified: ADEC-d3, AMEC-d3, OH-ADEC-d3, and DEC. Based on their high detection frequency, relative response, and specificity to their parent compounds, ADBC-d3 and OH-ADBC-d3 were identified as promising candidate biomarkers for ATBC exposure, while ADEC-d3 emerged as a suitable biomarker for ATEC. Estimated urinary elimination half-lives ranged from 1.0 to 9.9 h for ATBC metabolites and 1.6 to 3.0 h for ATEC metabolites. One-compartment kinetic modeling provided preliminary insights into metabolite kinetics. This research advances the understanding of ATBC and ATEC metabolism in humans, providing a foundation for future exposure assessments and toxicological studies. The identified biomarkers and preliminary metabolic profiles offer valuable starting points for biomonitoring and risk assessment of these alternative plasticizers.
RESUMO
Organophosphate esters (OPEs) are emerging contaminants that serve as alternatives to regulated substances in aquatic environments. A nationwide large-scale assessment for OPEs, including point sources, remains insufficient. To address this issue, we aimed to investigate OPEs occurrence and novel OPEs via comprehensive target, suspect and non-target analysis. Among the 11 target OPEs, 10 were detected at sampling sites distributed evenly nationwide. The highest mean concentrations were measured for tris-(2-butoxyethyl) phosphate (TBOEP) and tris(2-chloroisopropyl) phosphate (TCIPP). The multivariate statistical analysis revealed that TBOEP and TCIPP are essential components for assessing total OPEs pollution. The systematic risk assessment results evaluated the overall risk contribution of TBOEP and the significant risk impact of 2-ethylhexyl diphenyl phosphate. Promising suspect and non-target analysis enabled frequent detection and identification of 6 antioxidant transformation products (TPs), as well as the tentative identification of 14 OPEs and TPs, including 3 di-OPEs. Based on sampling site classification, we confirmed that major OPEs are significantly discharged near point sources. We believe that this is the first attempt to assess the nationwide risk and potential sources of OPEs in Korean surface waters, providing insights that could support further prioritization and regulation efforts.
RESUMO
Acetyl tributyl citrate (ATBC) and acetyl triethyl citrate (ATEC) are increasingly used as alternatives to phthalates in various products, including food packaging, medical devices, and personal care items, raising concerns about their potential health impacts. This study aimed to investigate the in vitro human metabolism of ATBC and ATEC and identify potential exposure biomarkers applicable in human biomonitoring. Pooled human liver microsomes were utilized to conduct in vitro metabolism assays of deuterium labeled ATBC (ATBC-d3) and ATEC, and ultra performance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UPLC-qToF/MS) was employed for analysis. Suspect screening workflow and confidence level assignment were applied for metabolite identification. Time-course analysis revealed rapid metabolism of both compounds, with estimated apparent half-lives of approximately 5 min for ATBC-d3 and less than 15 min for ATEC. Eleven metabolites were identified for ATBC-d3 and six for ATEC. The predominant chemical reactions observed were carboxylic ester hydrolysis, deacetylation, and hydroxylation. Based on their abundance and specificity, MB1 (hydroxylated) and MB11 (hydrolyzed and hydroxylated) were proposed as candidate exposure biomarkers for ATBC, and ME1 (hydrolyzed and deacetylated) for ATEC. The identified metabolites and proposed sequences of kinetic process enhance our understanding of the fate of these compounds in the human body, potentially informing future toxicological assessments and guiding the development of more comprehensive human biomonitoring strategies.
Assuntos
Biomarcadores , Citratos , Microssomos Hepáticos , Humanos , Microssomos Hepáticos/metabolismo , Biomarcadores/metabolismo , Citratos/metabolismo , Exposição AmbientalRESUMO
Plasticizers are chemicals that make plastics flexible, and phthalates are commonly used. Due to the toxic effects of phthalates, there is increasing use of non-phthalate plasticizers like acetyl tributyl citrate (ATBC). ATBC has emerged as a safer alternative, yet concerns about its long-term safety persist due to its high leachability and potential endocrine-disrupting effects. This study aims to identify ATBC metabolites using human liver microsomes and suspect screening methods, and to explore potential urinary biomarkers for ATBC exposure. Using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry, we identified ATBC metabolites, including acetyl dibutyl citrate (ADBC), tributyl citrate (TBC), and dibutyl citrate (DBC). Urine samples from 15 participants revealed the presence of ADBC in 5, TBC in 11, and DBC in all samples, with DBC concentrations pointedly higher than the other metabolites. These metabolites show promise as biomarkers for ATBC exposure, though further validation with human data is required. Our results underscore the need for comprehensive studies on ATBC metabolism, exposure pathways, and urinary excretion to accurately assess human exposure levels.
Assuntos
Citratos , Microssomos Hepáticos , Plastificantes , Humanos , Microssomos Hepáticos/metabolismo , Plastificantes/metabolismo , Citratos/urina , Citratos/metabolismo , Biomarcadores/urina , Biomarcadores/metabolismo , Cromatografia Líquida de Alta Pressão , Adulto , Disruptores Endócrinos/urina , Disruptores Endócrinos/metabolismoRESUMO
So far, there is limited information on biotransformation mechanisms and products of polar contaminants in freshwater crustaceans. In the present study, metabolites of biocides and pharmaceuticals formed in Gammarus pulex and Daphnia magna were identified using liquid chromatography-high resolution mass spectrometry. Different confidence levels were assigned to the identification of metabolites without reference standards using a framework based on the background evidence used for structure elucidation. Twenty-five metabolites were tentatively identified for irgarol, terbutryn, tramadol, and venlafaxine in G. pulex (21 via oxidation and 4 via conjugation reactions) and 11 metabolites in D. magna (7 via oxidation and 4 via conjugation reactions), while no evidence of metabolites for clarithromycin and valsartan was found. Of the 360 metabolites predicted for the four parent compounds using pathway prediction systems and expert knowledge, 23 products were true positives, while 2 identified metabolites were unexpected products. Observed oxidative reactions included N- and O-demethylation, hydroxylation, and N-oxidation. Glutathione conjugation of selected biocides followed by subsequent reactions forming cysteine conjugates was described for the first time in freshwater invertebrates.
Assuntos
Crustáceos/metabolismo , Desinfetantes/metabolismo , Preparações Farmacêuticas/metabolismo , Animais , Biotransformação , Crustáceos/química , Cicloexanóis/química , Cicloexanóis/metabolismo , Desinfetantes/química , Espectrometria de Massas , Redes e Vias Metabólicas , Oxirredução , Preparações Farmacêuticas/química , Tramadol/química , Tramadol/metabolismo , Triazinas/química , Triazinas/metabolismo , Cloridrato de VenlafaxinaRESUMO
Exposure and depuration experiments for Gammarus pulex and Daphnia magna were conducted to quantitatively analyze biotransformation products (BTPs) of organic micropollutants (tramadol, irgarol, and terbutryn). Quantification for BTPs without available standards was performed using an estimation method based on physicochemical properties. Time-series of internal concentrations of micropollutants and BTPs were used to estimate the toxicokinetic rates describing uptake, elimination, and biotransformation processes. Bioaccumulation factors (BAF) for the parents and retention potential factors (RPF), representing the ratio of the internal amount of BTPs to the parent at steady state, were calculated. Nonlinear correlation of excretion rates with hydrophobicity indicates that BTPs with lower hydrophobicity are not always excreted faster than the parent compound. For irgarol, G.pulex showed comparable elimination, but greater uptake and BAF/RPF values than D.magna. Further, G. pulex had a whole set of secondary transformations that D. magna lacked. Tramadol was transformed more and faster than irgarol and there were large differences in toxicokinetic rates for the structurally similar compounds irgarol and terbutryn. Thus, predictability of toxicokinetics across species and compounds needs to consider biotransformation and may be more challenging than previously thought because we found large differences in closely related species and similar chemical structures.
Assuntos
Crustáceos/efeitos dos fármacos , Poluentes Químicos da Água/farmacocinética , Poluentes Químicos da Água/toxicidade , Animais , Biotransformação , Calibragem , Cromatografia Líquida , Crustáceos/metabolismo , Água Doce , Espectrometria de Massas por Ionização por Electrospray , Triazinas/farmacocinética , Triazinas/toxicidadeRESUMO
Organic contaminants detected in sediments from Lake Greifensee and other compounds falling in the log Dow range from 1 to 7 were selected to study the bioconcentration of organic contaminants in sediments in Daphnia resting eggs (ephippia). Our results show that octocrylene, tonalide, triclocarban, and other personal care products, along with pesticides and biocides can accumulate in ephippia with log BCF values up to 3. Data on the uptake and depuration kinetics show a better fit toward a two compartment organism model over a single compartment model due to the differences in ephippial egg content in the environment. The obtained BCFs correlate with hydrophobicity for neutral compounds. Independence between BCF and hydrophobicity was observed for partially ionized compounds with log Dow values around 1. Internal concentrations in ephippia in the environment were predicted based on sediment concentrations using the equilibrium partitioning model and calculated BCFs. Estimated internal concentration values ranged between 1 and 68,000 µg/kglip with triclocarban having the highest internal concentrations followed by tonalide and triclosan. The outcomes indicate that contaminants can be taken up by ephippia from the water column or the pore water in the sediment and might influence fitness and sexual reproduction in the aquatic key species of the genus Daphnia.
Assuntos
Daphnia , Compostos Orgânicos/metabolismo , Poluentes Químicos da Água/metabolismo , Zigoto/metabolismo , Animais , Cosméticos/análise , Cosméticos/metabolismo , Sedimentos Geológicos/análise , Modelos Biológicos , Compostos Orgânicos/análise , Praguicidas/análise , Praguicidas/metabolismo , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/metabolismo , Poluentes Químicos da Água/análiseRESUMO
The inhibition of acetylcholinesterase (AChE) activity and energy allocation in the freshwater organism Daphnia magna exposed to carbaryl and potential recovery from the effects was examined. The binding of carbaryl-AChE was characterized through in vitro assays. To evaluate the recovery from inhibition and the alteration in energy budget, in vivo exposure and recovery regime tests were conducted. In comparison to diazoxon, the active metabolite of the insecticide diazinon, the stability of enzyme-carbaryl complex was fifteen times lower and the reactivity toward the active site was two times lower, resulting in approximately 30 times lower overall inhibition rate than for diazoxon. The in vitro reactivation rate constant of the inhibited enzyme and the in vivo recovery rate constant of AChE activity were 1.9 h⻹ and 0.12 h⻹ for carbaryl, respectively, which are much higher than the corresponding rate constants for diazoxon. The lower AChE inhibition and greater reactivation/recovery rates are in accordance with the lower toxicity of carbaryl compared to diazinon. Carbaryl exposure also altered the profile of the energy reserve: the decrease in lipid and glycogen and the increase in protein content resulted in the reduction of the total energy budget by about 45 mJ/g(ww). This corresponds to 26 percent of the available energy, which might allocate for external stressors. The mechanistic model of AChE inhibition is helpful to get an insight into (eco-)toxicological effects of AChE inhibitors on freshwater crustaceans under environmentally realistic conditions.
Assuntos
Carbaril/toxicidade , Inibidores da Colinesterase/toxicidade , Daphnia/efeitos dos fármacos , Inseticidas/toxicidade , Acetilcolinesterase/metabolismo , Animais , Carbaril/metabolismo , Inibidores da Colinesterase/metabolismo , Diazinon/metabolismo , Diazinon/toxicidade , Metabolismo Energético , Inseticidas/metabolismo , Modelos Biológicos , Compostos Organofosforados/metabolismo , Ligação ProteicaRESUMO
The widespread use of pesticides threatens the environment and ecosystems. Despite the positive effects of plant protection products, pesticides also have unexpected negative effects on nontarget organisms. The microbial biodegradation of pesticides is one of the major pathways for reducing their risks at aquatic ecosystems. The objective of this study was to compare the biodegradability of pesticides in simulated wetland and river systems. Parallel experiments were conducted with 17 pesticides based on the OECD 309 guidelines. A comprehensive analytical method, such as target screening combined with suspect and non-target screening, was performed to evaluate the biodegradation via identification of transformation products (TPs) using LC-HRMS. As evidence of biodegradation, we identified 97 TPs for 15 pesticides. Metolachlor and dimethenamid had 23 and 16 TPs, respectively, including Phase II glutathione conjugates. The analysis of 16S rRNA sequences for microbials characterized operational taxonomic units. Rheinheimera and Flavobacterium, which have the potential for glutathione S-transferase, were dominant in wetland systems. Estimation of toxicity, biodegradability, and hydrophobicity using QSAR prediction indicated lower environmental risks of detected TPs. We conclude that the wetland system is more favorable for pesticide degradation and risk mitigation mainly attributed to the abundance and variety of the microbial communities.
Assuntos
Praguicidas , Poluentes Químicos da Água , Praguicidas/análise , Áreas Alagadas , Ecossistema , Rios , RNA Ribossômico 16S , Poluentes Químicos da Água/análiseRESUMO
Urban rainfall events can lead to the runoff of pollutants, including industrial, pesticide, and pharmaceutical chemicals. Transporting micropollutants (MPs) into water systems can harm both human health and aquatic species. Therefore, it is necessary to investigate the dynamics of MPs during rainfall events. However, few studies have examined MPs during rainfall events due to the high analytical expenses and extensive spatiotemporal variability. Few studies have investigated the occurrence patterns of MPs and factors that influence their transport, such as rainfall duration, antecedent dry periods, and variations in streamflow. Moreover, while there have been many analyses of nutrients, suspended solids, and heavy metals during the first flush effect (FFE), studies on the transport of MPs during FFE are insufficient. This study aimed to identify the dynamics of MPs and FFE in an urban catchment, using high-resolution monitoring and machine learning methods. Hierarchical clustering analysis and partial least squares regression (PLSR) were implemented to estimate the similarity between each MP and identify the factors influencing their transport during rainfall events. Eleven dominant MPs comprised 75% of the total MP concentration and had a 100% detection frequency. During rainfall events, pesticides and pharmaceutical MPs showed a higher FFE than industrial MPs. Moreover, the initial 30% of the runoff volume contained 78.0% of pesticide and 50.1% of pharmaceutical substances for events W1 (July 5 to July 6, 2021) and W6 (August 31 to September 1, 2021), respectively. The PLSR model suggested that stormflow (m3/s) and the duration of antecedent dry hours (h) significantly influenced MP dynamics, yielding the variable importance on projection scores greater than 1.0. Hence, our findings indicate that MPs in urban waters should be managed by considering FFE.